ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the Josephson effect in one triple-terminal junction with embedded parallel-coupled double quantum dots. It is found that the inter-superconductor supercurrent has opportunities to oscillate in $4pi$ period, with the adjustment of the phase differences among the superconductors. What is notable is that such a result is robust and independent of fermion parities, intradot Coulomb strength, and the dot-superconductor coupling manner. By introducing the concept of spinful many-particle Majorana modes, we present the analytical definition of the Majorana operator via superposing electron and hole operators. It can be believed that this work provide a simple but feasible proposal for the realization of Majorana modes in a nonmagnetic system.
One Majorana doublet can be realized at each end of the time-reversal-invariant Majorana nanowires. We investigate the Josephson effect in the Majorana-doublet-presented junction modified by different inter-doublet coupling manners. It is found that when the Majorana doublets couple indirectly via a non-magnetic quantum dot, only the normal Josephson effects occur, and the fermion parity in the system just affects the current direction and amplitude. However, in the odd-parity case, applying finite magnetic field on the quantum dot can induce the appearance of the fractional Josephson effect. Next, when the direct and indirect couplings between the Majorana doublets coexist, no fractional Josephson effect takes place, regardless of finite magnetic field on the quantum dot. Instead, the $pi$-period current has an opportunity to appear in some special cases. All the results are clarified by analyzing the influence of the fermion occupation in the quantum dot on the parity conservation in the whole system. We ascertain that this work will be helpful for describing the dot-assisted Josephson effect between the Majorana doublets.
We have demonstrated that the ion current resulting from collisions between metastable krypton atoms in a magneto-optical trap can be used to precisely measure the trap loading rate. We measured both the ion current of the abundant isotope Kr-83 (iso topic abundance = 11%) and the single-atom counting rate of the rare isotope Kr-85 (isotopic abundance ~ 1x10^-11), and found the two quantities to be proportional at a precision level of 0.9%. This work results in a significant improvement in using the magneto-optical trap as an analytical tool for noble-gas isotope ratio measurements, and will benefit both atomic physics studies and applications in the earth sciences.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا