ترغب بنشر مسار تعليمي؟ اضغط هنا

The honeycomb carbon structure of graphene and nanotubes has a dynamics which can give rise to a spectrum. This can be excited via the interaction with an external electromagnetic field. In this work, non-linear waves on graphene and nanotubes associ ated with the carbon structure are investigated using a gauge model. Typical energies are estimated and there scaling with the nanoribbon width investigated. Furthermore, the soliton-photon interaction depends on the incident photon polarization. In particular, we find that the nanoribbon is transparent when the polarization is along the largest length. Relying on the scaling with the width, we suggest a way to experimentally identify the soliton waves in nanoribbons.
39 - W. de Paula 2008
We obtain an explicit solution of the 5d Einstein equations in a dilaton background model. We demonstrate that for each metric ansatz that only depends on the extra coordinate, it is possible to uniquely determine the dilaton field and its potential consistently with the 5d Einstein equation. In this holographic dual model of QCD, conformal symmetry of the Anti-de-Sitter metric near the 4d boundary is broken by a term that leads to an area law for the Wilson loop. We verify that confinement of the string modes dual to mesons follows from the metric background and the corresponding dilaton solution of the gravity-dilaton coupled equations. In addition, we show that the meson Regge trajectories constrain the metric and corresponding dilaton background within the area law requirement. We can also incorporate asymptotic freedom in the gravity background within the model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا