ترغب بنشر مسار تعليمي؟ اضغط هنا

We formulate a correspondence between non-relativistic conformal field theories (NRCFTs) in d-1 spatial dimensions and gravitational theories in AdS_{d+2} backgrounds with one compactified lightlike direction. The breaking of the maximal SO(2,d+1) sy mmetry of AdS_{d+2} to the non-relativistic conformal group arises from boundary conditions on bulk fields, without the need to introduce non-vacuum sources of energy-momentum. As a check of the proposal, we use the gravitational theory to reproduce the NRCFT state-operator correspondence between scaling dimensions of primary operators and energy eigenstates of the non-relativistic system placed in an external harmonic potential.
It is likely that the LHC will observe a color- and charge-neutral scalar whose decays are consistent with those of the Standard Model (SM) Higgs boson. The Higgs interpretation of such a discovery is not the only possibility. For example, electrowea k symmetry breaking (EWSB) could be triggered by a spontaneously broken, nearly conformal sector. The spectrum of states at the electroweak scale would then contain a narrow scalar resonance, the pseudo-Goldstone boson of conformal symmetry breaking, with Higgs-like properties. If the conformal sector is strongly coupled, this pseudo-dilaton may be the only new state accessible at high energy colliders. We discuss the prospects for distinguishing this mode from a minimal Higgs boson at the LHC and ILC. The main discriminants between the two scenarios are (1) cubic self-interactions and (2) a potential enhancement of couplings to massless SM gauge bosons. A particularly interesting situation arises when the scale f of conformal symmetry breaking is approximately the electroweak scale v~246 GeV. Although in this case the LHC may not be able to tell apart a pseudo-dilaton from the Higgs boson, the self-interactions differ in a way that depends only on the scaling dimension of certain operators in the conformal sector. This opens the possibility of using dilaton pair production at future colliders as a probe of EWSB induced by nearly conformal new physics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا