ترغب بنشر مسار تعليمي؟ اضغط هنا

We report temperature and thermal-cycling dependence of surface and bulk structures of double-layered perovskite Sr3Ru2O7 single crystals. The surface and bulk structures were investigated using low-energy electron diffraction (LEED) and single-cryst al X-ray diffraction (XRD) techniques, respectively. Single-crystal XRD data is in good agreement with previous reports for the bulk structure with RuO6 octahedral rotation, which increases with decreasing temperature (~ 6.7(6)degrees at 300 K and ~ 8.1(2) degrees at 90 K). LEED results reveal that the octahedra at the surface are much more distorted with a higher rotation angle (~ 12 degrees between 300 and 80 K) and a slight tilt ((4.5pm2.5) degrees at 300 K and (2.5pm1.7) degrees at 80 K). While XRD data confirms temperature dependence of the unit cell height/width ratio (i.e. lattice parameter c divided by the average of parameters a and b) found in a prior neutron powder diffraction investigation, both bulk and surface structures display little change with thermal cycles between 300 and 80 K.
BaFe2As2 exhibits properties characteristic of the parent compounds of the newly discovered iron (Fe)-based high-TC superconductors. By combining the real space imaging of scanning tunneling microscopy/spectroscopy (STM/S) with momentum space quantit ative Low Energy Electron Diffraction (LEED) we have identified the surface plane of cleaved BaFe2As2 crystals as the As terminated Fe-As layer - the plane where superconductivity occurs. LEED and STM/S data on the BaFe2As2(001) surface indicate an ordered arsenic (As) - terminated metallic surface without reconstruction or lattice distortion. It is surprising that the STM images the different Fe-As orbitals associated with the orthorhombic structure, not the As atoms in the surface plane.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا