ترغب بنشر مسار تعليمي؟ اضغط هنا

Charge symmetry breaking (CSB) observables are a suitable experimental tool to examine effects induced by quark masses on the nuclear level. Previous high precision data from TRIUMF and IUCF are currently used to develop a consistent description of C SB within the framework of chiral perturbation theory. In this work the experimental studies on the reaction dd->4He{pi}0 have been extended towards higher excess energies in order to provide information on the contribution of p-waves in the final state. For this, an exclusive measurement has been carried out at a beam momentum of p=1.2 GeV/c using the WASA-at-COSY facility. The total cross section amounts to sigma(tot) = (118 +- 18(stat) +- 13(sys) +- 8(ext)) pb and first data on the differential cross section are consistent with s-wave pion production.
An exclusive measurement of the dd -> 3He n pi 0 reaction was carried at a beam momentum of p = 1.2 GeV/c using the WASA-at-COSY facility. For the first time data on the total cross section as well as differential distributions were obtained. The dat a are described with a phenomenological approach based on a combination of a quasi-free model and a partial wave expansion for three-body reaction. The total cross section is found to be sigma(tot) = (2.89 +- 0.01(stat) +- 0.06(sys) +- 0.29(norm)) mu b. The contribution of the quasi-free processes (with the neutron being target or beam spectator) accounts for 38% of the total cross section and dominates the differential distributions in specific regions of the phase space. The remaining part of the cross section can be described within a partial wave decomposition indicating the significance of p-wave contributions in the final state.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا