ترغب بنشر مسار تعليمي؟ اضغط هنا

The composite nature of baryons manifests itself in the existence of a rich spectrum of excited states, in particular in the important mass region 1-2 GeV for the light-flavoured baryons. The properties of these resonances can be identified by system atic investigations using electromagnetic and strong probes, primarily with beams of electrons, photons, and pions. After decades of research, the fundamental degrees of freedom underlying the baryon excitation spectrum are still poorly understood. The search for hitherto undiscovered but predicted resonances continues at many laboratories around the world. Recent results from photo- and electroproduction experiments provide intriguing indications for new states and shed light on the structure of some of the known nucleon excitations. The continuing study of available data sets with consideration of new observables and improved analysis tools have also called into question some of the earlier findings in baryon spectroscopy. Other breakthrough measurements have been performed in the heavy-baryon sector, which has seen a fruitful period in recent years, in particular at the B factories and the Tevatron. First results from the LHC indicate rapid progress in the field of bottom baryons. In this review, we discuss the recent experimental progress and give an overview of theoretical approaches.
88 - Volker Crede 2011
Baryons are complex systems of confined quarks and gluons and exhibit the characteristic spectra of excited states. The systematics of the baryon excitation spectrum is important to our understanding of the effective degrees of freedom underlying nuc leon matter. High-energy electrons and photons are a remarkably clean probe of hadronic matter, providing a microscope for examining the nucleon and the strong nuclear force. Current experimental efforts with the CLAS spectrometer at Jefferson Laboratory utilize highly-polarized frozen-spin targets in combination with polarized photon beams. The status of the recent double-polarization experiments and some preliminary results are discussed in this contribution.
Photoproduction of neutral pions has been studied with the CBELSA/TAPS detector in the reaction $gamma pto ppi^0$ for photon energies between 0.85 and 2.50 GeV. The $pi^0$ mesons are observed in their dominant neutral decay mode: $pi^0togammagamma$. For the first time, the differential cross sections cover the very forward region, $theta_{rm c.m.}<60^circ$. A partial-wave analysis of these data within the Bonn-Gatchina framework observes the high-mass resonances $G_{17}$(2190), $D_{13}$(2080), and $D_{15}$(2070).
Photoproduction of neutral pions has been studied with the CBELSA/TAPS detector for photon energies between 0.92 and 1.68~GeV at the electron accelerator ELSA. The beam asymmetry~$Sigma$ has been extracted for $115^circ < theta_{rm c.m.} < 155^circ$ of the $pi^0$~meson and for $theta_{rm c.m.} < 60^circ$. The new beam asymmetry data improve the world database for photon energies above 1.5~GeV and, by covering the very forward region, extend previously published data for the same reaction by our collaboration. The angular dependence of $Sigma$ shows overall good agreement with the SAID parameterization.
Total and differential cross sections for $eta$ and $eta ^prime$ photoproduction off the proton have been determined with the CBELSA/TAPS detector for photon energies between 0.85 and 2.55 GeV. The $eta$ mesons are detected in their two neutral decay modes, $etatogammagamma$ and $etato 3pi^0to 6gamma$, and for the first time, cover the full angular range in $rm cos theta_{cm}$ of the $eta$ meson. These new $eta$ photoproduction data are consistent with the earlier CB-ELSA results. The $eta ^prime$ mesons are observed in their neutral decay to $pi^0pi^0etato 6gamma$ and also extend the coverage in angular range.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا