ترغب بنشر مسار تعليمي؟ اضغط هنا

72 - T. Maniv , V. Zhuravlev 2014
It is shown that the Dirac fermion structures created in the middle of the Landau bands in the vortex-lattice state of a pure 2D strongly type-II superconductor at half-integer filling factors can be effectively controlled by the external magnetic fi eld. The resulting field-induced modulation of the magneto-oscillations is shown to arise from Fermi-surface resonance scattering in the vortex core regions. Possible observation of the predicted effect in a quasi 2D organic superconductor is discussed.
453 - T. Maniv , V. Zhuravlev 2012
It is shown that coherent scatterings by an ordered vortex lattice are critically enhanced for quasi particles moving in cyclotron orbits on the Fermi surface through vortex core regions, thus generating significant quasi-periodic oscillating contrib utions to the SC free energy as a function of the inverse magnetic field. The mean frequency of the oscillation provides a fingerprint of the vortex lattice geometry. Vortex-lattice disorder, tends to suppress this oscillatory component.
334 - V. Zhuravlev , T. Maniv 2012
A new Greens function representation is employed in a microscopic derivation of a Ginzburg-Landau theory of strongly type superconductivity at high magnetic fields. An exact analytical, physically transparent expression for the quartic term in the co rresponding order parameter expansion is presented. The resulting expression reveals singular non-local contributions to the superconducting (SC) free energy, associated with highly coherent cyclotron motions of the paired electrons near the Fermi surface, which are strongly coupled to the vortex lattice. A major part of these contributions arises from incoherent scattering by the spatially averaged pair-potential, which is purely harmonic in the de Haas van Alphen frequency. However, coherent scatterings by the ordered vortex lattice generate, at low temperatures, large erratically oscillating (i.e. paramagnetic-diamagnetic) contribution to the SC free energy as a function of the magnetic field. Vortex lattice disorder, which tends to suppress this oscillatory component, is found to preserve the singular harmonic part of the SC free energy.
The phenomenon of magnetic quantum oscillations in the superconducting state poses several questions that still defy satisfactory answers. A key controversial issue concerns the additional damping observed in the vortex state. Here, we show results o f mu SR, dHvA, and SQUID magnetization measurements on borocarbide superconductors, indicating that a sharp drop observed in the dHvA amplitude just below H_{c2} is correlated with enhanced disorder of the vortex lattice in the peak-effect region, which significantly enhances quasiparticle scattering by the pair potential.
228 - V. Zhuravlev , T. Maniv 2009
The sharp suppression of the de-Haas van-Alphen oscillations observed in the mixed superconducting (SC) state of the heavy fermion compound URu$_{2}$Si$% _{2}$ is shown to confirm a theoretical prediction of a narrow double-stage SC phase transition, smeared by fluctuations, in a 3D paramagnetically-limitted superconductor. The predicted scenario of a second order transition to a nonuniform (FFLO) state followed by a first order transition to a uniform SC state, obtained by using a non-perturbative approach, is also found to be consistent with recent thermal conductivity measurements performed on this material.
67 - T. Maniv , V. Zhuravlev 2007
Superconducting phase transitions in strongly type-II superconductors in the Pauli paramagnetic limit are considered within the framework of the Gorkov-Ginzburg-Landau approach in the lowest Landau level approximation for both s and d-wave electron p airing. Simple analytical expressions for the quadratic and quartic coefficients in the order parameter expansion of the superconducting free energy are derived without relying on gradient or wavenumber expansions. The existence of a changeover from continuos to discontinuos superconducting phase transitions predicted to occur in the clean limit is shown to depend only on the dimensionality of the underlying electronic band structure. Such a changeover can take place in the quasi 2D regime below a critical value of a 3D-2D crossover parameter.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا