ترغب بنشر مسار تعليمي؟ اضغط هنا

The mass aggregation and merger histories of present-day distinct haloes selected from the cosmological Millennium Simulations I and II are mapped into stellar mass aggregation and galaxy merger histories of central galaxies by using empirical stella r-to-halo and stellar-to-gas mass relations. The growth of bulges driven by the galaxy mergers/interactions is calculated using dynamical prescriptions. The predicted bulge demographics at redshift z~0 is consistent with observations (Zavala+2012). Here we present the evolution of the morphological mix (traced by the bulge-to-total mass ratio, B/T) as a function of mass up to z=3. This mix remains qualitatively the same up to z~1: B/T<0.1 galaxies dominate at low masses, 0.1<B/T<0.45 at intermediate masses, and B/T>0.45 at large masses. At z>1, the fractions of disc-dominated and bulgeless galaxies increase strongly, and by z~2 the era of pure disc galaxies is reached. Bulge-dominated galaxies acquire such a morphology, and most of their mass, following a downsizing trend. Since our results are consistent with most of the recent observational studies of the morphological mix at different redshifts, a LCDM-based scenario of merger-driven bulge assembly does not seem to face critical issues. However, if the stellar-to-halo mass relation changes too little with redshift, then some tensions with observations appear.
In order to attain a statistical description of the evolution of cosmic density fluctuations in agreement with results from the numerical simulations, we introduce a probability conditional formalism (CF) based on an inventory of isolated overdense r egions in a density random field. This formalism is a useful tool for describing at the same time the mass function (MF) of dark haloes, their mass aggregation histories (MAHs) and merging rates (MRs). The CF focuses on virialized regions in a self-consistent way rather than in mass elements, and it offers an economical description for a variety of random fields. Within the framework of the CF, we confirm that, for a Gaussian field, it is not possible to reproduce at the same time the MF, MAH, and MR of haloes, both for a constant and moving barrier. Then, we develop an inductive method for constraining the cumulative conditional probability from a given halo MF description, and thus, using the CF, we calculate the halo MAHs and MRs. By applying this method to the MF measured in numerical simulations by Tinker et al. 2008, we find that a reasonable solution, justified by a mass conservation argument, is obtained if ones introduce a rescaling -increment by ~30% - of the virial mass used in simulations and a (slight) deviation from Gaussianity. Thus, both the MAH and MR obtained by a Monte Carlo merger tree agree now with the predictions of numerical simulations. We discuss on the necessity of rescaling the virial mass in simulations when comparing with analytical approaches on the ground of the matter not accounted as part of the halos and the halo mass limit due to numerical. Our analysis supports the presence of a diffuse dark matter component that is not taken into account in the measured halo MFs inasmuch as it is not part of the collapsed structures.
61 - V. Avila-Reese 2011
(Abridged) By means of high-resolution cosmological simulations in the context of the LCDM scenario, the specific star formation rate (SSFR=SFR/Ms, Ms is the stellar mass)--Ms and stellar mass fraction (Fs=Ms/Mh, Mh is the halo mass)--Ms relations of low-mass galaxies (2.5< Mh/10^10 Msun <50 at redshift z=0) at different epochs are predicted. The Hydrodynamics ART code was used and some variations of the sub-grid parameters were explored. Most of simulated galaxies, specially those with the highest resolutions, have significant disk components and their structural and dynamical properties are in reasonable agreement with observations of sub-M* field galaxies. However, the SSFRs are 5-10 times smaller than the averages of several (compiled and homogenized here) observational determinations for field blue/star-forming galaxies at z<0.3 (at low masses, most of observed field galaxies are actually blue/star-forming). This inconsistency seems to remain even at z~1.5 though less drastic. The Fs of simulated galaxies increases with Mh as semi-empirical inferences show, but in absolute values the former are ~5-10 times larger than the latter at z=0; this difference increases probably to larger factors at z~1-1.5. The inconsistencies reported here imply that simulated low-mass galaxies (0.2<Ms/10^9 Msun <30 at z=0) assembled their stellar masses much earlier than observations suggest. This confirms the predictions previously found by means of LCDM-based models of disk galaxy formation and evolution for isolated low-mass galaxies (Firmani & Avila-Reese 2010), and highlight that our implementation of astrophysics into simulations and models are still lacking vital ingredients.
The emerging empirical picture of galaxy stellar mass (Ms) assembly shows that galaxy population buildup proceeds from top to down in Ms. By connecting galaxies to LCDM halos and their histories, individual (average) Ms growth tracks can be inferred. These tracks show that massive galaxies assembled their Ms the earlier the more massive the halo, and that less massive galaxies are yet actively growing in Ms, the more active the less massive is the halo. The predicted star formation rates as a function of mass and the downsizing of the typical mass that separate active galaxies from the passive ones agree with direct observational determinations. This implies that the LCDM scenario is consistent with these observations. The challenge is now to understand the baryonic physics that drives the significant and systematical shift of the stellar mass assembly of galaxies from the mass assembly of their corresponding halos (from halo upsizing to galaxy downsizing).
249 - C. Firmani 2008
For a sample of long GRBs with known redshift, we study the distribution of the evolutionary tracks on the rest-frame luminosity-peak energy Liso-Ep diagram. We are interested in exploring the extension of the `Yonetoku correlation to any phase of th e prompt light curve, and in verifying how the high-signal prompt duration time, Tf, in the rest frame correlates with the residuals of such correlation (Firmani et al. 2006). For our purpose, we analyse separately two samples of time-resolved spectra corresponding to 32 GRBs with peak fluxes >1.8 phot cm^-2 s^-1 from the Swift-BAT detector, and 7 bright GRBs from the CGRO-BATSE detector previously processed by Kaneko et al. (2006). After constructing the Liso-Ep diagram, we discuss the relevance of selection effects, finding that they could affect significantly the correlation. However, we find that these effects are much less significant in the Liso x Tf-Ep diagram, where the intrinsic scatter reduces significantly. We apply further corrections for reducing the intrinsic scatter even more. For the sub-samples of GRBs (7 from Swift and 5 from CGRO) with measured jet break time, we analyse the effects of correcting Liso by jet collimation. We find that (i) the scatter around the correlation is reduced, and (ii) this scatter is dominated by the internal scatter of the individual evolutionary tracks. These results suggest that the time, integrated `Amati and `Ghirlanda correlations are consequences of the time resolved features, not of selection effects, and therefore call for a physical origin. We finally remark the relevance of looking inside the nature of the evolutionary tracks.
We explore how the slopes and scatters of the scaling relations of disk galaxies (Vm-L[-M], R-L[-M], and Vm-R) do change when moving from B to K bands and to stellar and baryonic quantities. For our compiled sample of 76 normal, non-interacting high and low surface brightness galaxies, we find some changes, which evidence evolution effects, mainly related to gas infall and star formation (SF). We also explore correlations among the (B-K) color, stellar mass fraction fs, mass M (luminosity L), and surface density (SB), as well as correlations among the residuals of the scaling relations. Some of our findings are: (i) the scale length Rb is a third parameter in the baryonic TF relation and the residuals of this relation follow a trend (slope ~-0.15) with the residuals of the Rb-Mb relation; for the stellar and K band cases, R is not anymore a third parameter and the mentioned trend disappears; (ii) among the TFRs, the B-band TFR is the most scattered; in this case, the color is a third parameter; (iii) the LSB galaxies break some observed trends, which suggest a threshold in the gas surface density Sg, below which the SF becomes independent of the gas infall rate and Sg. Our results are interpreted and discussed in the light of LCDM-based models of galaxy evolution. The models explain not only the baryonic scaling relations, but also most of the processes responsible for the observed changes in the slopes, scatters, and correlations among the residuals when changing to stellar and luminous quantities. The baryon fraction is required to be smaller than 0.05 on average. We detect some potential difficulties for the models: the observed color-M and surface density-M correlations are steeper, and the intrinsic scatter in the baryonic TFR is smaller than those predicted. [abridged]
41 - P. Colin Crya-Unam 2007
We report a series of high-resolution cosmological N-body simulations designed to explore the formation and properties of dark matter halos with masses close to the damping scale of the primordial power spectrum of density fluctuations. We further in vestigate the effect that the addition of a random component, v_rms, into the particle velocity field has on the structure of halos. We adopted as a fiducial model the Lambda Warm Dark Matter cosmology with a non-thermal sterile neutrino mass of 0.5 keV. The filtering mass corresponds then to M_f = 2.6x10^12 M_sun/h. Halos of masses close to M_f were simulated with several million of particles. The results show that, on one hand, the inner density slope of these halos (at radii <~0.02 the virial radius Rvir) is systematically steeper than the one corresponding to the NFW fit or to the CDM counterpart. On the other hand, the overall density profile (radii larger than 0.02Rvir) is less curved and less concentrated than the NFW fit, with an outer slope shallower than -3. For simulations with v_rms, the inner halo density profiles flatten significantly at radii smaller than 2-3 kpc/h (<~0.010-0.015Rvir). A constant density core is not detected in our simulations, with the exception of one halo for which the flat core radius is ~1 kpc/h. Nevertheless, if ``cored density profiles are used to fit the halo profiles, the inferred core radii are ~0.1-0.8 kpc/h, in rough agreement with theoretical predictions based on phase-space constrains, and on dynamical models of warm gravitational collapse. A reduction of v_rms by a factor of 3 produces a modest decrease in core radii, less than a factor of 1.5. We discuss the extension of our results into several contexts, for example, to the structure of the cold DM micro-halos at the damping scale of this model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا