ترغب بنشر مسار تعليمي؟ اضغط هنا

We present results of our time variability studies of Mg II and Al III absorption lines in a sample of 22 Low Ionization Broad Absorption Line QSOs (LoBAL QSOs) at 0.2 <= zem <= 2.1 using the 2m telescope at IUCAA Girawali Observatory over a time-sca le of 10 days to 7.69 years in the QSOs rest frame. Spectra are analysed in conjunction with photometric light curves from Catalina Real-Time Transient Survey. Long time-scale (i.e >= 1 year) absorption line variability is seen in 8 cases (36% systems) while only 4 of them (i.e 18% systems) show variability over short time-scales (i.e < 1 year). We notice a tendency of highly variable LoBAL QSOs to have high ejection velocity, low equivalent width and low redshift. The detection rate of variability in LoBAL QSOs showing Fe fine-structure lines (FeLoBAL QSOs) is less than that seen in non-Fe LoBAL QSOs. Absorption line variability is more frequently detected in QSOs having continuum dominated by Fe emission lines compared to rest of the QSOs. Confirming these trends with a bigger sample will give vital clues for understanding the physical distinction between different BAL QSO sub-classes. We correlate the absorption line variability with various parameters derived from continuum light curves and find no clear correlation between continuum flux and absorption line variabilities. However, sources with large absorption line variability also show large variability in their light curves. We also see appearance/disappearance of absorption components in 2 cases and clear indications for profile variations in 4 cases. The observed variability can be best explained by a combination of process driven by continuum variations and clouds transiting across the line of sight.
We calculate the screening charge density distribution due to a point charge, such as that of a positive muon ($mu^+$), placed between the planes of a highly anisotropic layered metal. In underdoped hole cuprates the screening charge converts the cha rge density in the metallic-plane unit cells in the vicinity of the $mu^+$ to nearly its value in the insulating state. The current-loop ordered state observed by polarized neutron diffraction then vanishes in such cells, and also in nearby cells over a distance of order the intrinsic correlation length of the loop-ordered state. This in turn strongly suppresses the loop-current field at the $mu^+$ site. We estimate this suppressed field in underdoped YBa$_2$Cu$_3$O$_{6+x}$ and La$_{2-x}$Sr$_x$CuO$_4$, and find consistency with the observed 0.2--0.3 G field in the former case and the observed upper bound of $sim$0.2 G in the latter case. This resolves the controversy between the neutron diffraction and $mu$SR experiments. The screening calculation also has relevance for the effect of other charge impurities in the cuprates, such as the dopants themselves.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا