ترغب بنشر مسار تعليمي؟ اضغط هنا

We study decentralized markets with the presence of middlemen, modeled by a non-cooperative bargaining game in trading networks. Our goal is to investigate how the network structure of the market and the role of middlemen influence the markets effici ency and fairness. We introduce the concept of limit stationary equilibrium in a general trading network and use it to analyze how competition among middlemen is influenced by the network structure, how endogenous delay emerges in trade and how surplus is shared between producers and consumers.
In this paper, a many-sources large deviations principle (LDP) for the transient workload of a multi-queue single-server system is established where the service rates are chosen from a compact, convex and coordinate-convex rate region and where the s ervice discipline is the max-weight policy. Under the assumption that the arrival processes satisfy a many-sources LDP, this is accomplished by employing Garcias extended contraction principle that is applicable to quasi-continuous mappings. For the simplex rate-region, an LDP for the stationary workload is also established under the additional requirements that the scheduling policy be work-conserving and that the arrival processes satisfy certain mixing conditions. The LDP results can be used to calculate asymptotic buffer overflow probabilities accounting for the multiplexing gain, when the arrival process is an average of emph{i.i.d.} processes. The rate function for the stationary workload is expressed in term of the rate functions of the finite-horizon workloads when the arrival processes have emph{i.i.d.} increments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا