ترغب بنشر مسار تعليمي؟ اضغط هنا

The Apache Point Observatory Galactic Evolution Experiment has measured the stellar velocities of red giant stars in the inner Milky Way. We confirm that the line of sight velocity distributions (LOSVDs) in the mid-plane exhibit a second peak at high velocities, whereas those at |b| = 2degrees do not. We use a high resolution simulation of a barred galaxy, which crucially includes gas and star formation, to guide our interpretation of the LOSVDs. We show that the data are fully consistent with the presence of a thin, rapidly rotating, nuclear disk extending to ~1 kpc. This nuclear disk is orientated perpendicular to the bar and is likely to be composed of stars on x2 orbits. The gas in the simulation is able to fall onto such orbits, leading to stars populating an orthogonal disk.
Large surveys have shown that red galaxies are preferentially aligned with their halos while blue galaxies have a more isotropic distribution. Since halos generally align with their filaments this introduces a bias in the measurement of the cosmic sh ear from weak lensing. It is therefore vitally important to understand why this difference arises. We explore the stability of different disc orientations within triaxial halos. We show that, in the absence of gas, the disc orientation is most stable when its spin is along the minor axis of the halo. Instead when gas cools onto a disc it is able to form in almost arbitrary orientation, including off the main planes of the halo (but avoiding an orientation perpendicular to the halos intermediate axis). Substructure helps gasless galaxies reach alignment with the halo faster, but have less effect on galaxies when gas is cooling onto the disc. Our results provide a novel and natural interpretation for why red, gas poor galaxies are preferentially aligned with their halo, while blue, star-forming, galaxies have nearly random orientations, without requiring a connection between galaxies current star formation rate and their merger history.
We use an N-body simulation to study the 3-D density distribution of spirals, and the resulting stellar vertical velocities. Relative to the discs rotation, the phase of the spirals peak density away from the mid-plane trails that at the mid-plane. I n addition, at fixed radius the density distribution is azimuthally skewed, having a shallower slope on the trailing side inside corotation and switching to shallower on the leading side beyond corotation. The spirals induce non-zero average vertical velocities, <V_z>, as large as <V_z> ~ 10-20 km/s, consistent with recent observations in the Milky Way. The vertical motions are compressive (towards the mid-plane) as stars enter the spiral, and expanding (away from the mid-plane) as they leave it. Since stars enter the spiral on the leading side outside corotation and on the trailing side within corotation, the relative phase of the expanding and compressive motions switches sides at corotation. Moreover, because stars always enter the spiral on the shallow density gradient side and exit on the steeper side, the expanding motions are larger than the compressing motions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا