ترغب بنشر مسار تعليمي؟ اضغط هنا

From the GOES-12/SXI data, we studied the initial stage of motion for six rapid (over 1500 km/s) halo coronal mass ejections (HCMEs) and traced the motion of these HCMEs within the SOHO/LASCO C2 and C3 field-of-view. For these HCMEs the time-dependen t location, velocity and acceleration of their fronts were revealed. The conclusion was drawn that two types of CME exist depending on their velocity time profile. This profile depends on the properties of the active region where the ejection emerged. CMEs with equal ejection velocity time dependence originate form in the same active region. All the HCMEs studied represent loop-like structures either from the first moment of recording or a few minutes later. All the HCMEs under consideration start their translational motion prior to the associated X-ray flare onset. The main acceleration time (time to reach the highest velocity within the LASCO/C2 field-of-view) is close to the associated flare X-ray radiation intensity rise time. The results of (Zhang and Dere, 2006) on the existence of an inverse correlation between the acceleration amplitude and duration, and also on the equality of the measured HCME main acceleration duration and the associated flare soft X-ray intensity rise time are validated. We established some regularities in the temporal variation of the angular size, trajectory, front width and the HCME longitude-to-cross size ratio.
In order to study the solar corona during eclipses, a new telescope was constructed. Three coronal images were obtained simultaneously from one objective of the telescope as the coronal radiation passed through three polarisers (whose transmission di rections were turned through 0^{circ}, 60^{circ}, and 120^{circ} to the chosen direction); one image without polariser was also obtained. The telescope was used to observe the solar corona during the eclipse of 1 August 2008. We obtained distributions of the polarisation brightness, K-corona brightness, degree of the K-corona polarisation and total polarisation degree; polarisation direction depending on the latitude and radius in the plane of the sky was also obtained. We calculated radial distributions of electron density, depending on the latitude. Properties of all these distributions in different coronal structures were compared. We determined temperature of coronal plasma in different coronal structures on the assumption that there is a hydrostatic equilibrium.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا