ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose to apply an object point process to automatically delineate filaments of the large-scale structure in redshift catalogues. We illustrate the feasibility of the idea on an example of the recent 2dF Galaxy Redshift Survey, describe the procedure, and characterise the results.
We present a morphological study of the two richest superclusters from the 2dF Galaxy Redshift Survey (SCL126, the Sloan Great Wall, and SCL9, the Sculptor supercluster). We use Minkowski functionals, shapefinders, and galaxy group information to stu dy the substructure of these superclusters as formed by different populations of galaxies. We compare the properties of grouped and isolated galaxies in the core region and in the outskirts of superclusters. The fourth Minkowski functional $V_3$ and the morphological signature $K_1$- $K_2$ show a crossover from low-density morphology (outskirts of supercluster) to high-density morphology (core of supercluster) at mass fraction $m_f approx 0.7$. The galaxy content and the morphology of the galaxy populations in supercluster cores and outskirts is different. The core regions contain a larger fraction of early type, red galaxies, and richer groups than the outskirts of superclusters. In the core and outskirt regions the fine structure of the two prominent superclusters as delineated by galaxies from different populations also differs. Our results suggest that both local (group/cluster) and global (supercluster) environments are important in forming galaxy morphologies and colors (and determining the star formation activity). The differences between the superclusters indicate that these superclusters have different evolutional histories (Abridged).
A study of the galaxy distribution in the field of the elliptical galaxy NGC1600 has been undertaken. Although this galaxy is often classified as a member of a loose group, all the neighbouring galaxies are much fainter and could be taken as satellit es of NGC1600. The number density profile of galaxies in the field of this galaxy shows a decline with radius, with evidence of a background at approximately 1.3 Mpc. The density and number density profile are consistent with that found for other isolated early-type galaxies. NGC1600 appears as an extended source in X-rays, and the center of the X-ray emission seems not to coincide with the center of the galaxy. The velocity distribution of neighbouring galaxies has been measured from optical spectroscopic observations and shows that the mean radial velocity is approximately 85 km/s less than that of NGC1600, indicating that the centre of mass could lie outside the galaxy. The velocity dispersion of the `group is estimated at 429 km/s. The inferred mass of the system is therefore of the order of 10^14 solar masses, a value that corresponds to a large group. NGC1600 therefore shares some similarities, but is not identical to, the `fossil clusters detected in X-ray surveys. Implications of this result for studies of isolated early-type galaxies are briefly discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا