ترغب بنشر مسار تعليمي؟ اضغط هنا

This study aims to characterise the polarized foreground emission in the ELAIS-N1 field and to address its possible implications for the extraction of the cosmological 21-cm signal from the Low-Frequency Array - Epoch of Reionization (LOFAR-EoR) data . We use the high band antennas of LOFAR to image this region and RM-synthesis to unravel structures of polarized emission at high Galactic latitudes. The brightness temperature of the detected Galactic emission is on average 4 K in polarized intensity and covers the range from -10 to +13rad m^-2 in Faraday depth. The total polarized intensity and polarization angle show a wide range of morphological features. We have also used the Westerbork Synthesis Radio Telescope (WSRT) at 350 MHz to image the same region. The LOFAR and WSRT images show a similar complex morphology, at comparable brightness levels, but their spatial correlation is very low. The fractional polarization at 150 MHz, expressed as a percentage of the total intensity, amounts to 1.5%. There is no indication of diffuse emission in total intensity in the interferometric data, in line with results at higher frequencies. The wide frequency range, good angular resolution and good sensitivity make LOFAR an exquisite instrument for studying Galactic polarized emission at a resolution of 1-2 rad m^-2 in Faraday depth. The different polarised patterns observed at 150 MHz and 350 MHz are consistent with different source distributions along the line of sight wring in a variety of Faraday thin regions of emission. The presence of polarised foregrounds is a serious complication for Epoch of Reionization experiments. To avoid the leakage of polarized emission into total intensity, which can depend on frequency, we need to calibrate the instrumental polarization across the field of view to a small fraction of 1%.
Experiments designed to measure the redshifted 21~cm line from the Epoch of Reionization (EoR) are challenged by strong astrophysical foreground contamination, ionospheric distortions, complex instrumental response and other different types of noise (e.g. radio frequency interference). The astrophysical foregrounds are dominated by diffuse synchrotron emission from our Galaxy. Here we present a simulation of the Galactic emission used as a foreground module for the LOFAR- EoR key science project end-to-end simulations. The simulation produces total and polarized intensity over $10^circ times 10^circ$ maps of the Galactic synchrotron and free-free emission, including all observed characteristics of the emission: spatial fluctuations of amplitude and spectral index of the synchrotron emission, together with Faraday rotation effects. The importance of these simulations arise from the fact that the Galactic polarized emission could behave in a manner similar to the EoR signal along the frequency direction. As a consequence, an improper instrumental calibration will give rise to leakages of the polarized to the total signal and mask the desired EoR signal. In this paper we address this for the first time through realistic simulations.
Future high redshift 21-cm experiments will suffer from a high degree of contamination, due both to astrophysical foregrounds and to non-astrophysical and instrumental effects. In order to reliably extract the cosmological signal from the observed da ta, it is essential to understand very well all data components and their influence on the extracted signal. Here we present simulated astrophysical foregrounds datacubes and discuss their possible statistical effects on the data. The foreground maps are produced assuming 5 deg x 5 deg windows that match those expected to be observed by the LOFAR Epoch-of-Reionization (EoR) key science project. We show that with the expected LOFAR-EoR sky and receiver noise levels, which amount to ~52 mK at 150 MHz after 300 hours of total observing time, a simple polynomial fit allows a statistical reconstruction of the signal. We also show that the polynomial fitting will work for maps with realistic yet idealised instrument response, i.e., a response that includes only a uniform uv coverage as a function of frequency and ignores many other uncertainties. Polarized galactic synchrotron maps that include internal polarization and a number of Faraday screens along the line of sight are also simulated. The importance of these stems from the fact that the LOFAR instrument, in common with all current interferometric EoR experiments has an instrumentally polarized response.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا