ترغب بنشر مسار تعليمي؟ اضغط هنا

We present new IRAM PdBI 1.3mm continuum observations at ~1.5 resolution of 28 SMGs previously discovered with the 870um bolometer LABOCA at APEX within the central 0.7deg2 of the COSMOS field. 19 out of the 28 LABOCA sources were detected with the P dBI at a >~3sigma level of ~1.4mJy/b. A combined analysis of this new sample with existing interferometrically identified SMGs in the COSMOS field yields the following results: 1) >~15%, and possibly up to ~40% of single-dish detected SMGs consist of multiple sources, 2) statistical identifications of multi-wavelength counterparts to the single-dish SMGs yield that only ~50% of these single-dish SMGs have real radio or IR counterparts, 3) ~18% of interferometric SMGs have only radio or even no multi-wavelength counterpart at all, and 4) ~50-70% of z>~3 SMGs have no radio counterparts down to an rms of 7-12uJy at 1.4GHz. Using the exact interferometric positions to identify proper multi-wavelength counterparts allows us to determine accurate photometric redshifts for these sources. The redshift distributions of the combined and the individual 1.1mm and 870um selected samples have a higher mean and broader width than the redshift distributions derived in previous studies. Our sample supports the previous tentative trend that on average brighter and/or mm-selected SMGs are located at higher redshifts. There is a tentative offset between the mean redshift for the 1.1mm (<z>=3.1+/-0.4) and 870um (<z>=2.6+/-0.4) selected samples, with the 1.1mm sources lying on average at higher redshifts. Based on our nearly complete sample of AzTEC 1.1mm SMGs within a uniform 0.15deg2 area we infer a higher surface density of z>~4 SMGs than predicted by current cosmological models. In summary, our findings imply that (sub-)millimeter interferometric identifications are crucial to build statistically complete and unbiased samples of SMGs.
71 - V. Smolcic , P. Capak , O. Ilbert 2011
Based on broad/narrow-band photometry and Keck DEIMOS spectroscopy we report a redshift of z=4.64-0.08+0.06 for AzTEC/COSMOS 1, the brightest sub-mm galaxy in the AzTEC/COSMOS field. In addition to the COSMOS-survey X-ray to radio data, we report obs ervations of the source with Herschel/PACS (100, 160 micron), CSO/SHARC II (350 micron), CARMA and PdBI (3 mm). We do not detect CO(5-4) line emission in the covered redshift ranges, 4.56-4.76 (PdBI/CARMA) and 4.94-5.02 (CARMA). If the line is within this bandwidth, this sets 3sigma upper limits on the gas mass to <~8x10^9 M_Sol and <~5x10^10 M_Sol, respectively (assuming similar conditions as observed in z~2 SMGs). This could be explained by a low CO-excitation in the source. Our analysis of the UV-IR spectral energy distribution of AzTEC 1 shows that it is an extremely young (<~50 Myr), massive (M*~10^11 M_Sol), but compact (<~2 kpc) galaxy forming stars at a rate of ~1300 M_Sol/yr. Our results imply that AzTEC 1 is forming stars in a gravitationally bound regime in which gravity prohibits the formation of a superwind, leading to matter accumulation within the galaxy and further generations of star formation.
We explore the properties of the submillijansky radio population at 20 cm by applying a newly developed optical color-based method to separate star forming (SF) from AGN galaxies at intermediate redshifts (z<1.3). Although optical rest-frame colors a re used, our separation method is shown to be efficient, and not biased against dusty starburst galaxies. This classification method has been calibrated and tested on a local radio selected optical sample. Given accurate multi-band photometry and redshifts, it carries the potential to be generally applicable to any galaxy sample where SF and AGN galaxies are the two dominant populations. In order to quantify the properties of the submillijansky radio population, we have analyzed ~2,400 radio sources, detected at 20 cm in the VLA-COSMOS survey. 90% of these have submillijansky flux densities. We classify the objects into 1) star candidates, 2) quasi stellar objects, 3) AGN, 4) SF, and 5) high redshift (z>1.3) galaxies. We find, for the composition of the submillijansky radio population, that SF galaxies are not the dominant population at submillijansky flux levels, as previously often assumed, but that they make up an approximately constant fraction of 30-40% in the flux density range of ~50 microJy to 0.7 mJy. In summary, based on the entire VLA-COSMOS radio population at 20 cm, we find that the radio population at these flux densities is a mixture of roughly 30-40% of SF and 50-60% of AGN galaxies, with a minor contribution (~10%) of QSOs.
We explore how well crowded field point-source photometry can be accomplished with SDSS data: We present a photometric pipeline based on DoPhot, and tuned for analyzing crowded-field images from the SDSS. Using Monte Carlo simulations we show that th e completeness of source extraction is above 80% to i < 21 (AB) and a stellar surface density of about 200 sq.amin. Hence, a specialized data pipeline can efficiently be used for e.g. nearby resolved galaxies in SDSS images, where the standard SDSS photometric package Photo, when applied in normal survey mode, gives poor results. We apply our pipeline to an area of about 3.55sq.deg. around the dwarf spheroidal galaxy (dSph) Leo I, and construct a high S/N star-count map of Leo I via an optimized filter in color-magnitude space (g,r,i). Although the radial surface-density profile of the dwarf deviates from the best fit empirical King model towards outer radii, we find no evidence for tidal debris out to a stellar surface-density of 4*10^(-3) of the central value. We determine the total luminosity of Leo I, and model its mass using the spherical and isotropic Jeans equation. Assuming that mass follows light we constrain a lower limit of the total mass of the dSph to be (1.7+/-0.2)*10^7 Msol. Contrary, if the mass in Leo I is dominated by a constant density dark-matter (DM) halo, then the mass within the central 12 is (2+/-0.6)*10^8 Msol. This leads to a mass-to-light ratio of >>6 (Ic_sol), and possibly >75 if the DM halo dominates the mass and extends further out than 12. In summary, our results show that Leo I is a symmetric, relaxed and bound system; this supports the idea that Leo I is a dark-matter dominated system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا