ترغب بنشر مسار تعليمي؟ اضغط هنا

The far-ultraviolet (FUV) spectrum of the Bright Star (B8 III) in 47 Tuc (NGC 104) shows a remarkable pattern: it is well fit by LTE models at wavelengths longer than Lyman beta, but at shorter wavelengths it is fainter than the models by a factor of two. A spectrum of this star obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) shows broad absorption troughs with sharp edges at 995 and 1010 A and a deep absorption feature at 1072 A, none of which are predicted by the models. We find that these features are caused by resonances in the photoionization cross sections of the first and second excited states of atomic nitrogen (2s$^2$ 2p$^3$ $^2$D$^0$ and $^2$P$^0$). Using cross sections from the Opacity Project, we can reproduce these features, but only if we use the cross sections at their full resolution, rather than the resonance-averaged cross sections usually employed to model stellar atmospheres. These resonances are strongest in stellar atmospheres with enhanced nitrogen and depleted carbon abundances, a pattern typical of post-AGB stars.
The Hopkins Ultraviolet Telescope (HUT) was a 0.9 m telescope and moderate-resolution (~3 A) far-ultraviolet (820-1850 A) spectrograph that flew twice on the space shuttle, in 1990 December (Astro-1, STS-35) and 1995 March (Astro-2, STS-67). The resu lting spectra were originally archived in a non-standard format that lacked important descriptive metadata. To increase their utility, we have modified the original data-reduction software to produce a new and more user-friendly data product, a time-tagged photon list similar in format to the Intermediate Data Files (IDFs) produced by the {it Far Ultraviolet Spectroscopic Explorer} calibration pipeline. We have transferred all relevant pointing and instrument-status information from locally-archived science and engineering databases into new FITS header keywords for each data set. Using this new pipeline, we have reprocessed the entire HUT archive from both missions, producing a new set of calibrated spectral products in a modern FITS format that is fully compliant with Virtual Observatory requirements. For each exposure, we have generated quick-look plots of the fully-calibrated spectrum and associated pointing history information. Finally, we have retrieved from our archives HUT TV guider images, which provide information on aperture positioning relative to guide stars, and converted them into FITS-format image files. All of these new data products are available in the new HUT section of the Mikulski Archive for Space Telescopes (MAST), along with historical and reference documents from both missions. In this paper, we document the improved data-processing steps applied to the data and show examples of the new data products.
We present new results from our survey of diffuse O VI-emitting gas in the interstellar medium with the Far Ultraviolet Spectroscopic Explorer (FUSE). Background observations obtained since 2005 have yielded eleven new O VI detections of 3-sigma sign ificance, and archival searches have revealed two more. An additional 15 sight lines yield interesting upper limits. Combined with previous results, these observations reveal the large-scale structure of the O VI-bearing gas in the quadrant of the sky centered on the Magellanic Clouds. The most prominent feature is a layer of low-velocity O VI emission extending more than 70 degrees from the Galactic plane. At low latitudes (|b| < 30 degrees), the emission comes from narrow, high-density conductive interfaces in the local ISM. At high latitudes, the emission is from extended, low-density regions in the Galactic halo. We also detect O VI emission from the interface region of the Magellanic System, a structure recently identified from H I observations. These are the first detections of emission from high-ionization species in the Magellanic System outside of the Clouds themselves.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا