ترغب بنشر مسار تعليمي؟ اضغط هنا

The severe crowding towards the Galactic plane suggests that the census of nearby stars in that direction may be incomplete. Recently, Scholz reported a new M9 object at an estimated distance d~7 pc (WISE J072003.20-084651.2; hereafter WISE0720) at G alactic latitude b=2.3 degr. Our goals are to determine the physical characteristics of WISE0720, its kinematic properties, and to address the question if it is a binary object, as suggested in the discovery paper. Optical and infrared spectroscopy from the Southern African Large Telescope and Magellan, respectively, and spectral energy distribution fitting were used to determine the spectral type of WISE0720. The measured radial velocity, proper motion and parallax yielded its Galactic velocities. We also investigated if WISE0720 may show X-ray activity based on archival data. Our spectra are consistent with spectral type L0+/-1. We find no evidence for binarity, apart for a minor 2-sigma level difference in the radial velocities taken at two different epochs. The spatial velocity of WISE0720 does not connect it to any known moving group, instead it places the object with high probability in the old thin disk or in the thick disk. The spectral energy distribution fit hints at excess in the 12 and 22 micron WISE bands which may be due to a redder companion, but the same excess is visible in other late type objects, and it more likely implies a shortcoming of the models (e.g., issues with the effective wavelengths of the filters for these extremely cool objects, etc.) rather than a disk or redder companion. The optical spectrum shows some Halpha emission, indicative of stellar activity. Archival X-ray observations yield no detection.
[abridged] The severe crowding in the direction of the inner Milky Way suggests that the census of stars within a few tens of parsecs in that direction may not be complete. We search for new nearby objects companions of known high proper motion (HP M) stars located towards the densest regions of the Southern Milky Way where the background contamination presented a major problem to previous works. The common proper motion (PM) method was used--we inspected the area around 167 known HPM (>=200 mas/yr) stars: 67 in the disk and 100 in the bulge. Multi-epoch images were provided by 2MASS and the VISTA Variables in Via Lactea (VVV). The VVV is a new on-going ZYJHKs plus multi-epoch Ks survey of ~562 deg^2 of Milky Ways bulge and inner Southern disk. Seven new co-moving companions were discovered around known HPM stars; six known co-moving pairs were recovered; a pair of stars that was thought to be co-moving was found to have different proper motions; published HPMs of eight stars were not confirmed; last but not least, spectral types ranging from G8V to M5V were derived from new infrared spectroscopy for seventeen stars, members of the co-moving pairs. The seven newly discovered stars constitute ~4% of the nearby HPM star list but this is not a firm limit on the HPM star incompleteness because our starting point--the HPM list assembled from the literature--is incomplete itself, missing many nearby HPM M and L type objects, and it is contaminated with non-HPM stars. We have demonstrated, that the superior sub-arcsec spatial resolution, with respect to previous surveys, allows the VVV to examine further the binary nature nature of known HPM stars. The >=5 yr span of VVV will provide sufficient baseline for finding new HPM stars from VVV data alone.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا