ترغب بنشر مسار تعليمي؟ اضغط هنا

84 - Tristan Guillot 2015
The installation and operation of a telescope in Antarctica represent particular challenges, in particular the requirement to operate at extremely cold temperatures, to cope with rapid temperature fluctuations and to prevent frosting. Heating of elec tronic subsystems is a necessity, but solutions must be found to avoid the turbulence induced by temperature fluctua- tions on the optical paths. ASTEP 400 is a 40 cm Newton telescope installed at the Concordia station, Dome C since 2010 for photometric observations of fields of stars and their exoplanets. While the telescope is designed to spread star light on several pixels to maximize photometric stability, we show that it is nonetheless sensitive to the extreme variations of the seeing at the ground level (between about 0.1 and 5 arcsec) and to temperature fluctuations between --30 degrees C and --80 degrees C. We analyze both day-time and night-time observations and obtain the magnitude of the seeing caused by the mirrors, dome and camera. The most important effect arises from the heating of the primary mirror which gives rise to a mirror seeing of 0.23 arcsec K--1 . We propose solutions to mitigate these effects.
115 - Tristan Guillot 2014
Studying exoplanets with their parent stars is crucial to understand their population, formation and history. We review some of the key questions regarding their evolution with particular emphasis on giant gaseous exoplanets orbiting close to solar-t ype stars. For masses above that of Saturn, transiting exoplanets have large radii indicative of the presence of a massive hydrogen-helium envelope. Theoretical models show that this envelope progressively cools and contracts with a rate of energy loss inversely proportional to the planetary age. The combined measurement of planetary mass, radius and a constraint on the (stellar) age enables a global determination of the amount of heavy elements present in the planet interior. The comparison with stellar metallicity shows a correlation between the two, indicating that accretion played a crucial role in the formation of planets. The dynamical evolution of exoplanets also depends on the properties of the central star. We show that the lack of massive giant planets and brown dwarfs in close orbit around G-dwarfs and their presence around F-dwarfs are probably tied to the different properties of dissipation in the stellar interiors. Both the evolution and the composition of stars and planets are intimately linked.
Context. Circumstellar disks are known to contain a significant mass in dust ranging from micron to centimeter size. Meteorites are evidence that individual grains of those sizes were collected and assembled into planetesimals in the young solar syst em. Aims. We assess the efficiency of dust collection of a swarm of non-drifting planetesimals {rev with radii ranging from 1 to $10^3$,km and beyond. Methods. We calculate the collision probability of dust drifting in the disk due to gas drag by planetesimal accounting for several regimes depending on the size of the planetesimal, dust, and orbital distance: the geometric, Safronov, settling, and three-body regimes. We also include a hydrodynamical regime to account for the fact that small grains tend to be carried by the gas flow around planetesimals. Results. We provide expressions for the collision probability of dust by planetesimals and for the filtering efficiency by a swarm of planetesimals. For standard turbulence conditions (i.e., a turbulence parameter $alpha=10^{-2}$), filtering is found to be inefficient, meaning that when crossing a minimum-mass solar nebula (MMSN) belt of planetesimals extending between 0.1 AU and 35 AU most dust particles are eventually accreted by the central star rather than colliding with planetesimals. However, if the disk is weakly turbulent ($alpha=10^{-4}$) filtering becomes efficient in two regimes: (i) when planetesimals are all smaller than about 10 km in size, in which case collisions mostly take place in the geometric regime; and (ii) when planetary embryos larger than about 1000 km in size dominate the distribution, have a scale height smaller than one tenth of the gas scale height, and dust is of millimeter size or larger in which case most collisions take place in the settling regime. These two regimes have very different properties: we find that the local filtering efficiency $x_{filter,MMSN}$ scales with $r^{-7/4}$ (where $r$ is the orbital distance) in the geometric regime, but with $r^{-1/4}$ to $r^{1/4}$ in the settling regime. This implies that the filtering of dust by small planetesimals should occur close to the central star and with a short spread in orbital distances. On the other hand, the filtering by embryos in the settling regime is expected to be more gradual and determined by the extent of the disk of embryos. Dust particles much smaller than millimeter size tend only to be captured by the smallest planetesimals because they otherwise move on gas streamlines and their collisions take place in the hydrodynamical regime. Conclusions. Our results hint at an inside-out formation of planetesimals in the infant solar system because small planetesimals in the geometrical limit can filter dust much more efficiently close to the central star. However, even a fully-formed belt of planetesimals such as the MMSN only marginally captures inward-drifting dust and this seems to imply that dust in the protosolar disk has been filtered by planetesimals even smaller than 1 km (not included in this study) or that it has been assembled into planetesimals by other mechanisms (e.g., orderly growth, capture into vortexes). Further refinement of our work concerns, among other things: a quantitative description of the transition region between the hydro and settling regimes; an assessment of the role of disk turbulence for collisions, in particular in the hydro regime; and the coupling of our model to a planetesimal formation model.
239 - Tristan Guillot 2014
We review the interior structure and evolution of Jupiter, Saturn, Uranus and Neptune, and giant exoplanets with particular emphasis on constraining their global composition. Compared to the first edition of this review, we provide a new discussion o f the atmospheric compositions of the solar system giant planets, we discuss the discovery of oscillations of Jupiter and Saturn, the significant improvements in our understanding of the behavior of material at high pressures and the consequences for interior and evolution models. We place the giant planets in our Solar System in context with the trends seen for exoplanets.
95 - Tristan Guillot 2010
Context: CoRoT-2b is one of the most anomalously large exoplanet known. Given its large mass, its large radius cannot be explained by standard evolution models. Interestingly, the planets parent star is an active, rapidly rotating solar-like star wit h a large fraction (7 to 20%) of spots. Aims: We want to provide constraints on the properties of the star-planet system and understand whether the planets inferred large size may be due to a systematic error on the inferred parameters, and if not, how it may be explained. Methods: We combine stellar and planetary evolution codes based on all available spectroscopic and photometric data to obtain self-consistent constraints on the system parameters. Results: We find no systematic error in the stellar modeling (including spots and stellar activity) that would yield the required ~10% reduction in size for the star and thus the planet. Two classes of solutions are found: the usual main sequence solution for the star yields for the planet a mass of 3.67+/-0.13 Mjup, a radius of 1.55+/-0.03 Rjup for an age that is at least 130Ma, and should be less than 500Ma given the stars fast rotation and significant activity. We identify another class of solutions on the pre-main sequence, in which case the planets mass is 3.45pm 0.27 Mjup, its radius is 1.50+/-0.06 Rjup for an age between 30 and 40 Ma. These extremely young solutions provide the simplest explanation for the planets size which can then be matched by a simple contraction from an initially hot, expanded state, provided the atmospheric opacities are increased by a factor ~3 compared to usual assumptions for solar compositions atmospheres. Other solutions imply in any case that the present inflated radius of CoRoT-2b is transient and the result of an event that occurred less than 20 Ma ago: a giant impact with another Jupiter-mass planet, or interactions with another object in the system which caused a significant rise of the eccentricity followed by the rapid circularization of its orbit. Conclusions: Additional observations of CoRoT-2 that could help understanding this system include searches for infrared excess and the presence of a debris disk and searches for additional companions. The determination of a complete infrared lightcurve including both the primary and secondary transits would also be extremely valuable to constrain the planets atmospheric properties and to determine the planet-to-star radius ratio in a manner less vulnerable to systematic errors due to stellar activity.
86 - Tristan Guillot 2010
The evolution of stars and planets is mostly controlled by the properties of their atmosphere. This is particularly true in the case of exoplanets close to their stars, for which one has to account both for an (often intense) irradiation flux, and fr om an intrinsic flux responsible for the progressive loss of the inner planetary heat. The goals of the present work are to help understanding the coupling between radiative transfer and advection in exoplanetary atmospheres and to provide constraints on the temperatures of the deep atmospheres. This is crucial in assessing whether modifying assumed opacity sources and/or heat transport may explain the inflated sizes of a significant number of giant exoplanets found so far. I use a simple analytical approach inspired by Eddingtons approximation for stellar atmospheres to derive a relation between temperature and optical depth valid for plane-parallel static grey atmospheres which are both transporting an intrinsic heat flux and receiving an outer radiation flux. The model is parameterized as a function of mean visible and thermal opacities, respectively. The model is shown to reproduce relatively well temperature profiles obtained from more sophisticated radiative transfer calculations of exoplanetary atmospheres. It naturally explains why a temperature inversion (stratosphere) appears when the opacity in the optical becomes significant compared to that in the infrared. I further show that the mean equivalent flux (proportional to T^4) is conserved in the presence of horizontal advection on constant optical depth levels. This implies with these hypotheses that the deep atmospheric temperature used as outer boundary for the evolution models should be calculated from models pertaining to the entire planetary atmosphere, not from ones that are relevant to the day side or to the substellar point. In these conditions, present-day models yield deep temperatures that are ~1000K too cold to explain the present size of planet HD 209458b. An tenfold increase in the infrared to visible opacity ratio would be required to slow the planetary cooling and contraction sufficiently to explain its size. However, the mean equivalent flux is not conserved anymore in the presence of opacity variations, or in the case of non-radiative vertical transport of energy: The presence of clouds on the night side or a downward transport of kinetic energy and its dissipation at deep levels would help making the deep atmosphere hotter and may explain the inflated sizes of giant exoplanets.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا