ترغب بنشر مسار تعليمي؟ اضغط هنا

44 - Tommaso de Fernex 2015
This note points out a gap in the proof of the main theorem of the article Birationally rigid hypersurfaces published in Invent. Math. 192 (2013), 533-566, and provides a new proof of the theorem.
In this paper, we give a definition of volume for subsets in the space of arcs of an algebraic variety, and study its properties. Our main result relates the volume of a set of arcs on a Cohen-Macaulay variety to its jet-codimension, a notion which g eneralizes the codimension of a cylinder in the arc space of a smooth variety.
Using inversion of adjunction, we deduce from Nadels theorem a vanishing property for ideals sheaves on projective varieties, a special case of which recovers a result due to Bertram--Ein--Lazarsfeld. This enables us to generalize to a large class of projective schemes certain bounds on Castelnuovo--Mumford regularity previously obtained by Bertram--Ein--Lazarsfeld in the smooth case and by Chardin--Ulrich for locally complete intersection varieties with rational singularities. Our results are tested on several examples.
Let X be an algebraic variety of characteristic zero. Terminal valuations are defined in the sense of the minimal model program, as those valuations given by the exceptional divisors on a minimal model over X. We prove that every terminal valuation o ver X is in the image of the Nash map, and thus it corresponds to a maximal family of arcs through the singular locus of X. In dimension two, this result gives a new proof of the theorem of Fernandez de Bobadilla and Pe Pereira stating that, for surfaces, the Nash map is a bijection.
We show that the reduction to positive characteristic of the multiplier ideal in the sense of de Fernex and Hacon agrees with the test ideal for infinitely many primes, assuming that the variety is numerically Q-Gorenstein. It follows, in particular, that this reduction property holds in dimension 2 for all normal surfaces.
Inspired by several works on jet schemes and motivic integration, we consider an extension to singular varieties of the classical definition of discrepancy for morphisms of smooth varieties. The resulting invariant, which we call Jacobian discrepancy , is closely related to the jet schemes and the Nash blow-up of the variety. This notion leads to a framework in which adjunction and inversion of adjunction hold in full generality, and several consequences are drawn from these properties. The main result of the paper is a formula measuring the gap between the dualizing sheaf and the Grauert-Riemenschneider canonical sheaf of a normal variety. As an application, we give characterizations for rational and Du Bois singularities on normal Cohen-Macaulay varieties in terms of Jacobian discrepancies. In the case when the canonical class of the variety is Q-Cartier, our result provides the necessary corrections for the converses to hold in theorems of Elkik, of Kovacs, Schwede and Smith, and of Kollar and Kovacs on rational and Du Bois singularities.
In this paper we generalize the definitions of singularities of pairs and multiplier ideal sheaves to pairs on arbitrary normal varieties, without any assumption on the variety being Q-Gorenstein or the pair being log Q-Gorenstein. The main features of the theory extend to this setting in a natural way.
Under some positivity assumptions, extension properties of rationally connected fibrations from a submanifold to its ambient variety are studied. Given a family of rational curves on a complex projective manifold X inducing a covering family on a sub manifold Y with ample normal bundle in X, the main results relate, under suitable conditions, the associated rational connected fiber structures on X and on Y. Applications of these results include an extension theorem for Mori contractions of fiber type and a classification theorem in the case Y has a structure of projective bundle or quadric fibration.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا