ترغب بنشر مسار تعليمي؟ اضغط هنا

The first measurements of the beam-target-helicity-asymmetries $E$ and $G$ in the photoproduction of $omega$-mesons off protons at the CBELSA/TAPS experiment are reported. $E$ ($G$) was measured using circularly (linearly) polarised photons and a lon gitudinally polarised target. $E$ was measured over the photon energy range from close to threshold ($E_gamma = 1108$~MeV) to $E_gamma = 2300$~MeV and $G$ at a single energy interval of $1108 < E_gamma <1300$~MeV. Both measurements cover the full solid angle. The observables $E$ and $G$ are highly sensitive to the contribution of baryon resonances, with $E$ acting as a helicity filter in the $s$-channel. The new results indicate significant $s$-channel resonance contributions together with contributions from $t$-channel exchange processes. A partial wave analysis reveals strong contributions from the partial waves with spin-parity $J^P=3/2^+, 5/2^+$, and $3/2^-$.
The reaction $gamma , p rightarrow K^0_S,Sigma^+$ is studied in the photon energy range from threshold. Linearly polarised photon beams from coherent bremsstrahlung enabled the first measurement of photon beam asymmetries in this reaction up to $E_ga mma = 2250$ MeV. In addition, the recoil hyperon polarisation was determined through the asymmetry in the weak decay $Sigma^+ rightarrow p pi^0$ up to $E_gamma = 1650$ MeV. The data are compared to partial wave analyses, and the possible impact on the interpretation of a recently observed cusp-like structure near the $K^*$ thresholds is discussed.
Measurements of $gamma p rightarrow K^{+} Lambda$ and $gamma p rightarrow K^{+} Sigma^0$ cross-sections have been obtained with the photon tagging facility and the Crystal Ball calorimeter at MAMI-C. The measurement uses a novel $K^+$ meson identific ation technique in which the weak decay products are characterized using the energy and timing characteristics of the energy deposit in the calorimeter, a method that has the potential to be applied at many other facilities. The fine center-of-mass energy ($W$) resolution and statistical accuracy of the new data results in a significant impact on partial wave analyses aiming to better establish the excitation spectrum of the nucleon. The new analyses disfavor a strong role for quark-diquark dynamics in the nucleon.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا