ترغب بنشر مسار تعليمي؟ اضغط هنا

110 - N. Araki , T. Nagao , K. Matsuoka 2012
We present near-infrared spectroscopy of the z=3.2 quasar SDSS J1707+6443, obtained with MOIRCS on the Subaru Telescope. This quasar is classified as a nitrogen-loud quasar because of the fairly strong NIII] and NIV] semi-forbidden emission lines fro m the broad-line region (BLR) observed in its rest-frame UV spectrum. However, our rest-frame optical spectrum from MOIRCS shows strong [OIII] emission from the narrow-line region (NLR) suggesting that, at variance with the BLR, NLR gas is not metal-rich. In order to reconcile these contradictory results, there may be two alternative possibilities; (1) the strong nitrogen lines from the BLR are simply due to a very high relative abundance of nitrogen rather than to a very high BLR metallicity, or (2) the BLR metallicity is not representative of the metallicity of the host galaxy, better traced by the NLR. In either case, the strong broad nitrogen lines in the UV spectrum are not indication of a chemically enriched host galaxy. We estimated the black hole mass and Eddington ratio of this quasar from the velocity width of both CIV and H_beta, that results in log(M_BH/M_sun) = 9.50 and log(L_bol/L_Edd) = -0.34. The relatively high Eddington ratio is consistent with our earlier result that strong nitrogen emission from BLRs is associated with high Eddington ratios. Finally, we detected significant [NeIII] emission from the NLR, implying a quite high gas density of n~10^6 cm^-3 and suggesting a strong coupling between quasar activity and dense interstellar clouds in the host galaxy.
The chemical properties of high-z galaxies provide important information to constrain galaxy evolutionary scenarios. However, widely-used metallicity diagnostics based on rest-frame optical emission lines are not usable for heavily dust-enshrouded ga laxies (such as Sub-Millimeter Galaxies; SMGs), especially at z>3. Here we focus on the flux ratio of the far-infrared fine-structure emission lines [NII]205um and [CII]158um to assess the metallicity of high-z SMGs. Through ALMA cycle 0 observations, we have detected the [NII]205um emission in a strongly [CII]-emitting SMG, LESS J033229.4-275619 at z=4.76. The velocity-integrated [NII]/[CII] flux ratio is 0.043 +/- 0.008. This is the first measurement of the [NII]/[CII] flux ratio in high-z galaxies, and the inferred flux ratio is similar to the ratio observed in the nearby universe (~0.02-0.07). The velocity-integrated flux ratio and photoionization models suggest that the metallicity in this SMG is consistent with solar, implying the chemical evolution has progressed very rapidly in this system at z=4.76. We also obtain a tight upper limit on the CO(12-11) transition, which translates into CO(12-11)/CO(2-1) <3.8 (3 sigma). This suggests that the molecular gas clouds in LESS J033229.4-275619 are not affected significantly by the radiation field emitted by the AGN in this system.
379 - Tohru Nagao 2010
Although measuring the gas metallicity in galaxies at various redshifts is crucial to constrain galaxy evolutionary scenarios, only rest-frame optical emission lines have been generally used to measure the metallicity. This has prevented us to accura tely measure the metallicity of dust-obscured galaxies, and accordingly to understand the chemical evolution of dusty populations, such as ultraluminous infrared galaxies. Here we propose diagnostics of the gas metallicity based on infrared fine structure emission lines, which are nearly unaffected by dust extinction even the most obscured systems. Specifically, we focus on fine-structure lines arising mostly from HII regions, not in photo-dissociation regions, to minimize the dependence and uncertainties of the metallicity diagnostics from various physical parameters. Based on photoionization models, we show that the emission-line flux ratio of ([OIII]51.80+[OIII]88.33)/[NIII]57.21 is an excellent tracer of the gas metallicity. The individual line ratios [OIII]51.80/[NIII]57.21 or [OIII]88.33/[NIII]57.21 can also be used as diagnostics of the metallicity, but they suffer a stronger dependence on the gas density. The line ratios [OIII]88.33/[OIII]51.80 and [NII]121.7/[NIII]57.21 can be used to measure and, therefore, account for the dependences on the of the gas density and ionization parameter, respectively. We show that these diagnostic fine-structure lines are detectable with Herschel in luminous infrared galaxies out z=0.4. Metallicity measurements with these fine-structure lines will be feasible at relatively high redshift (z=1 or more) with SPICA, the future infrared space observatory.
We present a new photometric search for high-z galaxies hosting Population III (PopIII) stars based on deep intermediate-band imaging observations obtained in the Subaru Deep Field (SDF), by using Suprime-Cam on the Subaru Telescope. By combining our new data with the existing broad-band and narrow-band data, we searched for galaxies which emit strongly both in Ly_alpha and in HeII 1640 (``dual emitters) that are promising candidates for PopIII-hosting galaxies, at 3.93<z<4.01 and 4.57<z<4.65. Although we found 10 ``dual emitters, most of them turn out to be [OII]-[OIII] dual emitters or H_beta-(H_alpha+[NII]) dual emitters at z<1, as inferred from their broad-band colors and from the ratio of the equivalent widths. No convincing candidate of Ly_alpha-HeII dual emitter of SFR_PopIII > 2 Msun/yr was found by our photometric search in 4.03 x 10^5 Mpc^3 in the SDF. This result disfavors low feedback models for PopIII star clusters, and implies an upper-limit of the PopIII SFR density of SFRD_PopIII < 5 x 10^-6 Msun/yr/Mpc^3. This new selection method to search for PopIII-hosting galaxies should be useful in future narrow-band surveys to achieve the first observational detection of PopIII-hosting galaxies at high redshifts.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا