ترغب بنشر مسار تعليمي؟ اضغط هنا

113 - Todor Stanev 2012
We describe the current situation of the data on the highest energy particles in the Universe - the ultrahigh energy cosmic rays. The new results in the field come from the Telescope Array experiment in Utah, U.S.A. For this reason we concentrate on the results from this experiments and compare them to the measurements of the other two recent experiments, the High Resolution Flys Eye and the Southern Auger Observatory
This is a review of the most resent results from the investigation of the Ultrahigh Energy Cosmic Rays, particles of energy exceeding 10$^{18}$ eV. After a general introduction to the topic and a brief review of the lower energy cosmic rays and the d etection methods, the two most recent experiments, the High Resolution Flys Eye (HiRes) and the Southern Auger Observatory are described. We then concentrate on the results from these two experiments on the cosmic ray energy spectrum, the chemical composition of these cosmic rays and on the searches for their sources. We conclude with a brief analysis of the controversies in these results and the projects in development and construction that can help solve the remaining problems with these particles.
47 - Todor Stanev 2010
We present the current status of the IceTop air shower array on top of the IceCube neutrino detector that IceTop can use as a huge detector of TeV muons. We laos give a brief discussion of different types of air shower events that contain information on the spectrum and composition of the cosmic rays in a wide energy range.
134 - Todor Stanev 2010
We present the main results on the energy spectrum and composition of the highest energy cosmic rays of energy exceeding 10$^{18}$ eV obtained by the High Resolution Flys Eye and the Southern Auger Observatory. The current results are somewhat contra dictory and raise interesting questions about the origin and character of these particles.
391 - Todor Stanev 2009
We describe the design and performance of IceTop, the air shower array on top of the IceCube neutrino detector. After the 2008/09 antarctic summer season both detectors are deployed at almost 3/4 of their design size. With the current IceTop 59 stati ons we can start the study of showers of energy well above 10$^{17}$ eV. The paper also describes the first results from IceTop and our plans to study the cosmic ray composition using several different types of analysis.
186 - Todor Stanev 2008
We briefly describe the energy loss processes of ultrahigh energy protons, heavier nuclei and gamma rays in interactions with the universal photon fields of the Universe. We then discuss the modification of the accelerated cosmic ray energy spectrum in propagation by the energy loss processes and the charged cosmic ray scattering in the extragalactic magnetic fields. The energy lost by the ultrahigh energy cosmic rays goes into gamma rays and neutrinos that carry additional information about the sources of highest energy particles. The new experimental results of the HiRes and the Auger collaborations are discussed in view of the predictions from propagation calculations.
47 - Todor Stanev 2008
We discuss the anisotropic arrival directions of the ultra high energy cosmic rays detected by Auger which I consider one of the biggest discoverie in astrophysics during the last year.
138 - Todor Stanev 2008
We discuss the main results that were recently published by the Auger Collaboration and their impact on our knowledge of the ultra high energy cosmic rays and neutrinos.
106 - Todor Stanev 2008
We examine the anisotropy of the arrival directions of twenty seven ultra high energy cosmic rays detected by the Pierre Auger Collaboration. We confirm the anisotropy of the arrival directions of these events and find a significant correlation with the updated definition of the supergalactic plane at distances up to 70 Mpc, A Monte Carlo calculation of isotropic source distribution suggests a chance probability for isotropic event arrival direction distribution of 2-6$times10^{-4}$.
97 - Todor Stanev 2007
We discuss the basic difficulties in understanding the origin of the highest energy particles in the Universe - the ultrahigh energy cosmic rays (UHECR). It is difficult to imagine the sources they are accelerated in. Because of the strong attenuatio n of UHECR on their propagation from the sources to us these sources should be at cosmologically short distance from us but are currently not identified. We also give information of the most recent experimental results including the ones reported at this conference and compare them to models of the UHECR origin.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا