ترغب بنشر مسار تعليمي؟ اضغط هنا

128 - Tobias Schmidt 2015
Let G be a split semi-simple p-adic group and let H be its Iwahori-Hecke algebra with coefficients in the algebraic closure k of the finite field with p elements. Let F be the affine flag variety over k associated with G. We show, in the simply conne cted simple case, that a torus-equivariant K-theory of F (with coefficients in k) admits an H-action by Demazure operators and that this provides a model for the regular representation of H.
The star-forming regions in Chamaeleon (Cha) are among the nearest (distance ~165 pc) and youngest (age ~2 Myrs) conglomerates of recently formed stars and among the ideal targets for studies of star formation. We search for new, hitherto unknown bin ary or multiple-star components and investigate their membership in Cha and their gravitationally bound nature. We used the NACO instrument at the VLT UT 4/YEPUN of the Paranal Observatory, at 2 or 3 different epochs, in order to obtain relative and absolute astrometric measurements, as well as differential photometry in the J, H, and Ks band. On the basis of known proper motions and these observations, we analysed the astrometric results in proper motion diagrams to eliminate possible (non-moving) background stars and establish co-moving binaries and multiples. DI Cha turns out to be a quadruple system with a hierachical structure, consisting of two binaries: a G2/M6 pair and a co-moving pair of two M5.5 dwarfs. For both pairs we detected orbital motion (P~130 and ~65 years), although in opposite directions. Sz 22 is a binary whose main component is embedded in a circumstellar disc or reflection nebula, accompanied by a co-moving M4.5 dwarf. CHXR 32 is a triple system, consisting of a single G5 star, weakened by an edge-on disc and a co-moving pair of M1/M3.5 dwarfs whose components show significant variations in their angular separation. Finally, Cha Halpha 5 is a binary consisting of two unresolved M6.5 dwarfs whose strong variations in position angle at its projected separation of only 8 AU imply an orbital period of ~46 years. DI Cha D and Cha Halpha 5 A&B are right at the stellar mass limit and could possibly be brown dwarfs. In spite of various previously published studies of the star-forming regions in Cha we found four hitherto unknown components in young low-mass binaries and multiple systems. (abridged)
In our ongoing search for close and faint companions around T Tauri stars, we found a very faint (Ks=14.9mag, Ks_0=14.4mag) object, just ~2.67 northwest of the Chamaeleon star-forming region member CT Cha corresponding to a projected separation of ~4 40AU at 165+/-30 pc. We show that CT Cha A and this faint object form a common proper motion pair from data of the VLT Adaptive Optics (AO) instrument NACO taken in February 2006 and March 2007 and that the companion is by >=4 sigma significance not a stationary background object. Our AO integral field spectroscopy with SINFONI in J, and H+K bands yields a temperature of 2600+/-250K for the companion and an optical extinction of A_V=5.2+/-0.8mag, when compared to spectra calculated from Drift-Phoenix model atmospheres. We demonstrate the validity of the model fits by comparison to several other well-known young sub-stellar objects. Relative flux calibration of the bands was achieved using photometry from the NACO imaging data. We conclude that the CT Cha companion is a very low-mass member of Chamaeleon and very likely a physical companion to CT Cha, as the probability for a by chance alignment is <=0.01. Due to a prominent Pa-Beta emission in the J-band, accretion is probably still ongoing onto the CT Cha companion. From temperature and luminosity (log(Lbol/Lsun)= -2.68+/-0.21), we derive a radius of R=2.20+0.81-0.60 R_Jup. We find a consistent mass of M=17+/-6 MJup for the CT Cha companion from both its luminosity and temperature when placed on evolutionary tracks. Hence, the CT Cha companion is most likely a wide brown dwarf companion or possibly even a planetary mass object.
Neuhaeuser & Comeron (1998, 1999) presented direct imaging evidence, as well as first spectra, of several young stellar and sub-stellar M6- to M8-type objects in the Cha I dark cloud. One of these objects is Cha Halpha 2, classified as brown dwarf ca ndidate in several publications and suggested as possible binary in Neuhaeuser et al. (2002). We have searched around Cha Halpha 2 for close and faint companions with adaptive optics imaging. Two epochs of direct imaging data were taken with the Very Large Telescope (VLT) Adaptive Optics instrument NACO in February 2006 and March 2007 in Ks-band. We retrieved an earlier image from 2005 from the European Southern Observatory (ESO) Science Archive Facility, increasing the available time coverage. After confirmation of common proper motion, we deduce physical parameters of the objects by spectroscopy, like temperature and mass. We find Cha Halpha 2 to be a very close binary of ~0.16 arcsec separation, having a flux ratio of ~0.91, thus having almost equal brightness and indistinguishable spectral types within the errors. We show that the two tentative components of Cha Halpha 2 form a common proper motion pair, and that neither component is a non-moving background object. We even find evidence for orbital motion. A combined spectrum of both stars spanning optical and near-infrared parts of the spectral energy distribution yields a temperature of 3000+/-100 K, corresponding to a spectral type of M6+/-1 and a surface gravity of log g= 4.0 +0.75-0.5, both from a comparison with GAIA model atmospheres. We derive masses of ~0.110 Msun (>0.070 Msun) and ~0.124 Msun (>0.077 Msun) for the two components of Cha Halpha 2, i.e., probably low-mass stars, but one component could possibly be a brown dwarf.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا