ترغب بنشر مسار تعليمي؟ اضغط هنا

69 - T. Muller , B. Zhang , R. Fermani 2009
We store and control ultra-cold atoms in a new type of trap using magnetic fields of vortices in a high temperature superconducting micro-structure. This is the first time ultra-cold atoms have been trapped in the field of magnetic flux quanta. We ge nerate the attractive trapping potential for the atoms by combining the magnetic field of a superconductor in the remanent state with external homogeneous magnetic fields. We show the control of crucial atom trap characteristics such as an efficient intrinsic loading mechanism, spatial positioning of the trapped atoms and the vortex density in the superconductor. The measured trap characteristics are in good agreement with our numerical simulations.
We present a compact $^{87}$Rb atomic source for high precision dual atom interferometers. The source is based on a double-stage magneto-optical trap (MOT) design, consisting of a 2-dimensional (2D)-MOT for efficient loading of a 3D-MOT. The accumula ted atoms are precisely launched in a horizontal moving molasses. Our setup generates a high atomic flux ($>10^{10}$ atoms/s) with precise and flexibly tunable atomic trajectories as required for high resolution Sagnac atom interferometry. We characterize the performance of the source with respect to the relevant parameters of the launched atoms, i.e. temperature, absolute velocity and pointing, by utilizing time-of-flight techniques and velocity selective Raman transitions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا