ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the electronic Bloch oscillation in bilayer graphene gradient superlattices using transfer matrix method. By introducing two kinds of gradient potentials of square barriers along electrons propagation direction, we find that Bloch osci llations up to terahertz can occur. Wannier-Stark ladders, as the counterpart of Bloch oscillation, are obtained as a series of equidistant transmission peaks, and the localization of the electronic wave function is also signature of Bloch oscillation. Forthermore, the period of Bloch oscillation decreases linearly with increasing gradient of barrier potentials.
We investigate electronic band structure and transport properties in bilayer graphene superlattices of Thue-Morse sequence. It is interesting to find that the zero-$bar{k}$ gap center is sensitive to interlayer coupling $t$, and the centers of all ga ps shift versus $t$ at a linear way. Extra Dirac points may emerge at $k_{y} e$0, and when the extra Dirac points are generated in pairs, the electronic conductance obeys a diffusive law, and the Fano factor tends to be 1/3 as the order of Thue-Morse sequence increases. Our results provide a flexible and effective way to control the transport properties in graphene.
In a pristine monolayer graphene subjected to a constant electric field along the layer, the Bloch oscillation of an electron is studied in a simple and efficient way. By using the electronic dispersion relation, the formula of a semi-classical veloc ity is derived analytically, and then many aspects of Bloch oscillation, such as its frequency, amplitude, as well as the direction of the oscillation, are investigated. It is interesting to find that the electric field affects the component of motion, which is non-collinear with electric field, and leads the particle to be accelerated or oscillated in another component.
210 - Tianxing Ma , Balazs Dora 2008
The NMR relaxation rate and the static spin susceptibility in graphene are studied within a tight-binding description. At half filling, the NMR relaxation rate follows a power law as $T^2$ on the particle-hole symmetric side, while with a finite chem ical potential $mu$ and next-nearest neighbor $t$, the $(mu+3t)^2$ terms dominate at low excess charge $delta$. The static spin susceptibility is linearly dependent on temperature $T$ at half filling when $t=0$, while with a finite $mu$ and $t$, it should be dominated by $(mu+3t)$ terms in low energy regime. These unusual phenomena are direct results of the low energy excitations of graphene, which behave as massless Dirac fermions. Furthermore, when $delta$ is high enough, there is a pronounced crossover which divides the temperature dependence of the NMR relaxation rate and the static spin susceptibility into two temperature regimes: the NMR relaxation rate and the static spin susceptibility increase dramatically as temperature increases in the low temperature regime, and after the crossover, both decrease as temperature increases at high temperatures. This crossover is due to the well-known logarithmic Van Hove singularity in the density of states, and its position dependence of temperature is sensitive to $delta$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا