ترغب بنشر مسار تعليمي؟ اضغط هنا

This paper addresses the task of unsupervised video multi-object segmentation. Current approaches follow a two-stage paradigm: 1) detect object proposals using pre-trained Mask R-CNN, and 2) conduct generic feature matching for temporal association u sing re-identification techniques. However, the generic features, widely used in both stages, are not reliable for characterizing unseen objects, leading to poor generalization. To address this, we introduce a novel approach for more accurate and efficient spatio-temporal segmentation. In particular, to address textbf{instance discrimination}, we propose to combine foreground region estimation and instance grouping together in one network, and additionally introduce temporal guidance for segmenting each frame, enabling more accurate object discovery. For textbf{temporal association}, we complement current video object segmentation architectures with a discriminative appearance model, capable of capturing more fine-grained target-specific information. Given object proposals from the instance discrimination network, three essential strategies are adopted to achieve accurate segmentation: 1) target-specific tracking using a memory-augmented appearance model; 2) target-agnostic verification to trace possible tracklets for the proposal; 3) adaptive memory updating using the verified segments. We evaluate the proposed approach on DAVIS$_{17}$ and YouTube-VIS, and the results demonstrate that it outperforms state-of-the-art methods both in segmentation accuracy and inference speed.
On existing public benchmarks, face forgery detection techniques have achieved great success. However, when used in multi-person videos, which often contain many people active in the scene with only a small subset having been manipulated, their perfo rmance remains far from being satisfactory. To take face forgery detection to a new level, we construct a novel large-scale dataset, called FFIW-10K, which comprises 10,000 high-quality forgery videos, with an average of three human faces in each frame. The manipulation procedure is fully automatic, controlled by a domain-adversarial quality assessment network, making our dataset highly scalable with low human cost. In addition, we propose a novel algorithm to tackle the task of multi-person face forgery detection. Supervised by only video-level label, the algorithm explores multiple instance learning and learns to automatically attend to tampered faces. Our algorithm outperforms representative approaches for both forgery classification and localization on FFIW-10K, and also shows high generalization ability on existing benchmarks. We hope that our dataset and study will help the community to explore this new field in more depth.
To address the challenging task of instance-aware human part parsing, a new bottom-up regime is proposed to learn category-level human semantic segmentation as well as multi-person pose estimation in a joint and end-to-end manner. It is a compact, ef ficient and powerful framework that exploits structural information over different human granularities and eases the difficulty of person partitioning. Specifically, a dense-to-sparse projection field, which allows explicitly associating dense human semantics with sparse keypoints, is learnt and progressively improved over the network feature pyramid for robustness. Then, the difficult pixel grouping problem is cast as an easier, multi-person joint assembling task. By formulating joint association as maximum-weight bipartite matching, a differentiable solution is developed to exploit projected gradient descent and Dykstras cyclic projection algorithm. This makes our method end-to-end trainable and allows back-propagating the grouping error to directly supervise multi-granularity human representation learning. This is distinguished from current bottom-up human parsers or pose estimators which require sophisticated post-processing or heuristic greedy algorithms. Experiments on three instance-aware human parsing datasets show that our model outperforms other bottom-up alternatives with much more efficient inference.
Acquiring sufficient ground-truth supervision to train deep visual models has been a bottleneck over the years due to the data-hungry nature of deep learning. This is exacerbated in some structured prediction tasks, such as semantic segmentation, whi ch requires pixel-level annotations. This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation. We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths, which can be used for training more accurate segmentation models. In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes, and the underlying relations between a pair of images are characterized by an efficient co-attention mechanism. Moreover, in order to prevent the model from paying excessive attention to common semantics only, we further propose a graph dropout layer, encouraging the model to learn more accurate and complete object responses. The whole network is end-to-end trainable by iterative message passing, which propagates interaction cues over the images to progressively improve the performance. We conduct experiments on the popular PASCAL VOC 2012 and COCO benchmarks, and our model yields state-of-the-art performance. Our code is available at: https://github.com/Lixy1997/Group-WSSS.
Rapid progress has been witnessed for human-object interaction (HOI) recognition, but most existing models are confined to single-stage reasoning pipelines. Considering the intrinsic complexity of the task, we introduce a cascade architecture for a m ulti-stage, coarse-to-fine HOI understanding. At each stage, an instance localization network progressively refines HOI proposals and feeds them into an interaction recognition network. Each of the two networks is also connected to its predecessor at the previous stage, enabling cross-stage information propagation. The interaction recognition network has two crucial parts: a relation ranking module for high-quality HOI proposal selection and a triple-stream classifier for relation prediction. With our carefully-designed human-centric relation features, these two modules work collaboratively towards effective interaction understanding. Further beyond relation detection on a bounding-box level, we make our framework flexible to perform fine-grained pixel-wise relation segmentation; this provides a new glimpse into better relation modeling. Our approach reached the $1^{st}$ place in the ICCV2019 Person in Context Challenge, on both relation detection and segmentation tasks. It also shows promising results on V-COCO.
In this paper, we present a novel Motion-Attentive Transition Network (MATNet) for zero-shot video object segmentation, which provides a new way of leveraging motion information to reinforce spatio-temporal object representation. An asymmetric attent ion block, called Motion-Attentive Transition (MAT), is designed within a two-stream encoder, which transforms appearance features into motion-attentive representations at each convolutional stage. In this way, the encoder becomes deeply interleaved, allowing for closely hierarchical interactions between object motion and appearance. This is superior to the typical two-stream architecture, which treats motion and appearance separately in each stream and often suffers from overfitting to appearance information. Additionally, a bridge network is proposed to obtain a compact, discriminative and scale-sensitive representation for multi-level encoder features, which is further fed into a decoder to achieve segmentation results. Extensive experiments on three challenging public benchmarks (i.e. DAVIS-16, FBMS and Youtube-Objects) show that our model achieves compelling performance against the state-of-the-arts.
84 - Jinwu Liu , Yao Lu , Tianfei Zhou 2015
Multiple Instance Learning (MIL) recently provides an appealing way to alleviate the drifting problem in visual tracking. Following the tracking-by-detection framework, an online MILBoost approach is developed that sequentially chooses weak classifie rs by maximizing the bag likelihood. In this paper, we extend this idea towards incorporating the instance significance estimation into the online MILBoost framework. First, instead of treating all instances equally, with each instance we associate a significance-coefficient that represents its contribution to the bag likelihood. The coefficients are estimated by a simple Bayesian formula that jointly considers the predictions from several standard MILBoost classifiers. Next, we follow the online boosting framework, and propose a new criterion for the selection of weak classifiers. Experiments with challenging public datasets show that the proposed method outperforms both existing MIL based and boosting based trackers.
103 - Tianfei Zhou , Yao Lu , Feng Lv 2014
Stochastic sampling based trackers have shown good performance for abrupt motion tracking so that they have gained popularity in recent years. However, conventional methods tend to use a two-stage sampling paradigm, in which the search space needs to be uniformly explored with an inefficient preliminary sampling phase. In this paper, we propose a novel sampling-based method in the Bayesian filtering framework to address the problem. Within the framework, nearest neighbor field estimation is utilized to compute the importance proposal probabilities, which guide the Markov chain search towards promising regions and thus enhance the sampling efficiency; given the motion priors, a smoothing stochastic sampling Monte Carlo algorithm is proposed to approximate the posterior distribution through a smoothing weight-updating scheme. Moreover, to track the abrupt and the smooth motions simultaneously, we develop an abrupt-motion detection scheme which can discover the presence of abrupt motions during online tracking. Extensive experiments on challenging image sequences demonstrate the effectiveness and the robustness of our algorithm in handling the abrupt motions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا