ترغب بنشر مسار تعليمي؟ اضغط هنا

The spectrum of any star viewed through a sufficient quantity of diffuse interstellar material reveals a number of absorption features collectively called diffuse interstellar bands (DIBs). The first DIBs were reported 90 years ago, and currently wel l over 500 are known. None of them has been convincingly identified with any specific element or molecule, although recent studies suggest that the DIB carriers are polyatomic molecules containing carbon. Most of the DIBs currently known are at visible and very near-infrared wavelengths, with only two previously known at wavelengths beyond one micron (10,000 Angstroms), the longer of which is at 1.318 microns. Here we report the discovery of thirteen diffuse interstellar bands in the 1.5-1.8 micron interval on high extinction sightlines toward stars in the Galactic centre. We argue that they originate almost entirely in the Galactic Centre region, a considerably warmer and harsher environment than where DIBs have been observed previously. The relative strengths of these DIBs toward the Galactic Centre and the Cygnus OB2 diffuse cloud are consistent with their strengths scaling mainly with extinction by diffuse material.
70 - T. R. Geballe , T. Oka 2009
Until now the known sources in the Galactic center with sufficiently smooth spectra and of sufficient brightness to be suitable for high resolution infrared absorption spectroscopy of interstellar gas occupied a narrow range of longitudes, from the c entral cluster of hot stars to approximately 30 pc east of the center. In order to more fully characterize the gas within the r ~ 180 pc central molecular zone it is necessary to find additional such sources that cover a much wider longitudinal range. We are in the process of identifying luminous dust-embedded objects suitable for spectroscopy within 1.2 deg in longitude and 0.1 deg in latitude of Sgr A* using the Spitzer GLIMPSE and the 2MASS catalogues. Here we present spectra of H3+ and CO towards two such objects, one located 140 pc west of Sgr A*, and the other located on a line of sight to the Sgr B molecular cloud complex 85 pc to the east of Sgr A*. The sightline to the west passes through two dense clouds of unusually high negative velocities and also appears to sample a portion of the expanding molecular ring. The spectra toward Sgr B reveal at least ten absorption components covering over 200 km/s and by far the largest equivalent width ever observed in an interstellar H3+line; they appear to provide the first near-infrared view into that hotbed of star formation.
We report moderate resolution 3-5 micron spectroscopy of the nucleus of NGC 1068 obtained at 0.3 arcsec (20 pc) resolution with the spectrograph slit aligned approximately along the ionization cones of the AGN. The deconvolved FWHM of the nuclear con tinuum source in this direction is 0.3 arcsec. Four coronal lines of widely different excitations were detected; the intensity of each peaks near radio knot C, approximately 0.3 arcsec north of the infrared continuum peak, where the radio jet changes direction. Together with the broadened line profiles observed near that location, this suggests that shock-ionization is the dominant excitation mechanism of the coronal lines. The depth of the 3.4 micron hydrocarbon absorption is maximum at and just south of the continuum peak, similar to the 10 micron silicate absorption. That and the similar and rapid variations of the optical depths of both features across the nucleus suggest that substantial portions of both arise in a dusty environment just in front of the continuum source(s). A new and tighter limit is set on the column density of CO. Although clumpy models of the dust screen might explain the shallowness of the silicate feature, the presence of the 3.4 micron feature and the absence of CO are strongly reminiscent of Galactic diffuse cloud environments and a consistent explanation for them and the observed silicate feature is found if all three phenomena occur in such an environment, existing as close as 10 pc from the central engine.
282 - Tom Geballe 2009
This paper relates the history of attempts to detect H3+ in the dense interstellar medium, from the early 1980s to the successful detection in 1996.
86 - T. R. Geballe 2009
M band spectra of two late-type T dwarfs, 2MASS J09373487+2931409, and Gliese 570D, confirm evidence from photometry that photospheric CO is present at abundance levels far in excess of those predicted from chemical equilibrium. These new and unambig uous detections of CO, together with an earlier spectroscopic detection of CO in Gliese 229B and existing M band photometry of a large selection of T dwarfs, suggest that vertical mixing in the photosphere drives the CO abundance out of chemical equilibrium and is a common, and likely universal feature of mid-to-late type T dwarfs. The M band spectra allow determinations of the time scale of vertical mixing in the atmosphere of each object, the first such measurements of this important parameter in late T dwarfs. A detailed analysis of the spectral energy distribution of 2MASS J09373487+2931409 results in the following values for metallicity, temperature, surface gravity, and luminosity: [M/H]~-0.3, T_eff=925-975K, log g=5.20-5.47, log L/L_sun=-5.308 +/- 0.027. The age is 3-10 Gyr and the mass is in the range 45-69 M_Jup.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا