ترغب بنشر مسار تعليمي؟ اضغط هنا

The observation of Pauli blocking of atomic spontaneous decay via direct measurements of the atomic population requires the use of long-lived atomic gases where quantum statistics, atom recoil and cooperative radiative processes are all relevant. We develop a theoretical framework capable of simultaneously accounting for all these effects in a regime where prior theoretical approaches based on semi-classical non-interacting or interacting frozen atom approximations fail. We apply it to atoms in a single 2D pancake or arrays of pancakes featuring an effective $Lambda$ level structure (one excited and two degenerate ground states). We identify a parameter window in which a factor of two extension in the atomic lifetime clearly attributable to Pauli blocking should be experimentally observable in deeply degenerate gases with $sim 10^{3} $ atoms. Our predictions are supported by observation of a number-dependent excited state decay rate on the ${}^{1}rm{S_0}-{}^{3}rm{P_1}$ transition in $^{87}$Sr atoms.
We study a bulk fermionic dipolar molecular gas in the quantum degenerate regime confined in a two-dimensional geometry. We consider two rotational states that encode a spin 1/2 degree of freedom. We derive a long-range interacting XXZ model describi ng the many-body spin dynamics of the molecules valid in the regime where motional degrees of freedom are frozen. Due to the spatially extended nature of the harmonic oscillator modes, the interactions in the spin model are very long-ranged and the system behaves close to the collective limit, resulting in robust dynamics and generation of entanglement in the form of spin squeezing even at finite temperature and in presence of dephasing and chemical reactions. We demonstrate how the internal state structure can be exploited to realise time-reversal and enhanced metrological sensing protocols.
We study the low temperature static and dynamical properties of the classical bond-disordered antiferromagnetic Heisenberg model on the kagome lattice. This model has recently been shown to host a new type of spin liquid exhibiting an exponentially l arge number of discrete ground states. Surprisingly, despite the rigidity of the groundstates, we establish the vanishing of the corresponding spin stiffness. Locally, the low-lying eigenvectors of the Hessian appear to exhibit a fractal inverse participation ratio. Its spin dynamics resembles that of Coulomb Heisenberg spin liquids, but exhibits a new low-temperature dynamically arrested regime, which however gets squeezed out with increasing system size. We also probe the properties of the energy landscape underpinning this behaviour, and find energy barriers between distinct ground states vanishing with system size. In turn the local minima appear highly connected and the system tends to lose memory of its inital state in an accumulation of soft directions.
We study the many-body phases of bosonic atoms with $N$ internal states confined to a 1D optical lattice under the influence of a synthetic magnetic field and strong repulsive interactions. The $N$ internal states of the atoms are coupled via Raman t ransitions creating the synthetic magnetic field in the space of internal spin states corresponding to recent experimental realisations. We focus on the case of strong $mbox{SU}(N)$ invariant local density-density interactions in which each site of the 1D lattice is at most singly occupied, and strong Raman coupling, in distinction to previous work which has focused on the weak Raman coupling case. This allows us to keep only a single state per site and derive a low energy effective spin $1/2$ model. The effective model contains first-order nearest neighbour tunnelling terms, and second-order nearest neighbour interactions and correlated next-nearest neighbour tunnelling terms. By adjusting the flux $phi$ one can tune the relative importance of first-order and second-order terms in the effective Hamiltonian. In particular, first-order terms can be set to zero, realising a novel model with dominant second-order terms. We show that the resulting competition between density-dependent tunnelling and repulsive density-density interaction leads to an interesting phase diagram including a phase with long-ranged pair-superfluid correlations. The method can be straightforwardly extended to higher dimensions and lattices of arbitrary geometry including geometrically frustrated lattices where the interplay of frustration, interactions and kinetic terms is expected to lead to even richer physics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا