ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider theoretically the transport in a one-channel spinless Luttinger liquid with two strong impurities in the presence of dissipation. As a difference with respect to the dissipation free case, where the two impurities fully transmit electrons at resonance points, the dissipation prevents complete transmission in the present situation. A rich crossover diagram for the conductance as a function of applied voltage, temperature, dissipation strength, Luttinger liquid parameter K and the deviation from the resonance condition is obtained. For weak dissipation and 1/2<K<1, the conduction shows a non-monotonic increase as a function of temperature or voltage. For strong dissipation the conduction increases monotonically but is exponentially small.
We study theoretically the transport through a single impurity in a one-channel Luttinger liquid coupled to a dissipative (ohmic) bath . For non-zero dissipation $eta$ the weak link is always a relevant perturbation which suppresses transport strongl y. At zero temperature the current voltage relation of the link is $Isim exp(-E_0/eV)$ where $E_0simeta/kappa$ and $kappa$ denotes the compressibility. At non-zero temperature $T$ the linear conductance is proportional to $exp(-sqrt{{cal C}E_0/k_BT})$. The decay of Friedel oscillation saturates for distance larger than $L_{eta}sim 1/eta $ from the impurity.
In a recent letter Klein et al. [Nature 413, 404 (2001); cond-mat/0110018] provide experimental evidence for the existence of the Bragg glass phase in impure type II superconductors. Here we show that a more complete consideration of recent theoretic al findings allows an even better interpretation of the experimental data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا