ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider linear and nonlinear modes pinned to a grating-free (gapless) layer placed between two symmetric or asymmetric semi-infinite Bragg gratings (BGs), with a possible phase shift between them, in a medium with the uniform Kerr nonlinearity. T he asymmetry is defined by a difference between bandgap widths in the two BGs. In the linear system, exact defect modes (DMs) are found. Composite gap solitons pinned to the central layer are found too, in analytical and numerical forms, in the nonlinear model. In the asymmetric system, existence boundaries for the DMs and gap solitons, due to the competition between attraction to the gapless layer and repulsion from the reflectivity step, are obtained analytically. Stability boundaries for solitons in the asymmetric system are identified by means of direct simulations. Collisions of moving BG solitons with the gapless layer are studied too.
We introduce the simplest one-dimensional nonlinear model with the parity-time (PT) symmetry, which makes it possible to find exact analytical solutions for localized modes (solitons). The PT-symmetric element is represented by a point-like (delta-fu nctional) gain-loss dipole {delta}^{prime}(x), combined with the usual attractive potential {delta}(x). The nonlinearity is represented by self-focusing (SF) or self-defocusing (SDF) Kerr terms, both spatially uniform and localized ones. The system can be implemented in planar optical waveguides. For the sake of comparison, also introduced is a model with separated {delta}-functional gain and loss, embedded into the linear medium and combined with the {delta}-localized Kerr nonlinearity and attractive potential. Full analytical solutions for pinned modes are found in both models. The exact solutions are compared with numerical counterparts, which are obtained in the gain-loss-dipole model with the {delta}^{prime}- and {delta}- functions replaced by their Lorentzian regularization. With the increase of the dipoles strength, {gamma}, the single-peak shape of the numerically found mode, supported by the uniform SF nonlinearity, transforms into a double-peak one. This transition coincides with the onset of the escape instability of the pinned soliton. In the case of the SDF uniform nonlinearity, the pinned modes are stable, keeping the single-peak shape.
We consider a two-component one-dimensional model of gap solitons (GSs), which is based on two nonlinear Schrodinger equations, coupled by repulsive XPM (cross-phase-modulation) terms, in the absence of the SPM (self-phase-modulation) nonlinearity. T he equations include a periodic potential acting on both components, thus giving rise to GSs of the symbiotic type, which exist solely due to the repulsive interaction between the two components. The model may be implemented for holographic solitons in optics, and in binary bosonic or fermionic gases trapped in the optical lattice. Fundamental symbiotic GSs are constructed, and their stability is investigated, in the first two finite bandgaps of the underlying spectrum. Symmetric solitons are destabilized, including their entire family in the second bandgap, by symmetry-breaking perturbations above a critical value of the total power. Asymmetric solitons of intra-gap and inter-gap types are studied too, with the propagation constants of the two components falling into the same or different bandgaps, respectively. The increase of the asymmetry between the components leads to shrinkage of the stability areas of the GSs. Inter-gap GSs are stable only in a strongly asymmetric form, in which the first-bandgap component is a dominating one. Intra-gap solitons are unstable in the second bandgap. Unstable two-component GSs are transformed into persistent breathers. In addition to systematic numerical considerations, analytical results are obtained by means of an extended (tailed) Thomas-Fermi approximation (TFA).
We introduce the two-dimensional Gross-Pitaevskii/nonlinear-Schrodinger (GP/NLS) equation with the self-focusing nonlinearity confined to two identical circles, separated or overlapped. The model can be realized in terms of Bose-Einstein condensates (BECs) and photonic-crystal fibers. Following the recent analysis of the spontaneous symmetry breaking (SSB) of localized modes trapped in 1D and 2D double-well nonlinear potentials (also known as pseudopotentials), we aim to find 2D solitons in the two-circle setting, using numerical methods and the variational approximation (VA). Well-separated circles support stable symmetric and antisymmetric solitons. The decrease of separation L between the circles leads to destabilization of the solitons. The symmetric modes undergo two SSB transitions. First, they are transformed into weakly asymmetric breathers, which is followed by a transition to single-peak modes trapped in one circle. The antisymmetric solitons perform a direct transition to the single-peak mode. The symmetric solitons are described reasonably well by the VA. For touching (L=0) and overlapping (L<0) circles, single-peak solitons are found-asymmetric ones, trapped in either circle, and symmetric solitons centered at the midpoint of the bi-circle configuration. If the overlap is weak, the symmetric soliton is unstable. It may spontaneously leap into either circle and perform shuttle motion in it. A region of stability of the symmetric solitons appears with the increase of the overlap degree. In the case of a moderately strong overlap, another SSB effect is found, in the form of a pair of symmetry-breaking and restoring bifurcations which link families of the symmetric and asymmetric solitons.
We report results of the investigation of gap solitons (GSs) in the generic model of a periodically modulated Bragg grating (BG), which includes periodic modulation of the BG chirp or local refractive index, and periodic variation of the local reflec tivity. We demonstrate that, while the previously studied reflectivity modulation strongly destabilizes all solitons, the periodic chirp modulation, which is a novel feature, stabilizes a new family of double-peak fundamental BGs in the side bandgap at negative frequencies (gap No. -1), and keeps solitons stable in the central bandgap (No. 0). The two soliton families demonstrate bistability, coexisting at equal values of energy. In addition, stable 4-peak bound states are formed by pairs of fundamental GSs in bandgap -1. Self-trapping and mobility of the solitons are studied too.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا