ترغب بنشر مسار تعليمي؟ اضغط هنا

473 - Terrence S. Tricco 2015
Numerical methods to improve the treatment of magnetic fields in smoothed field magnetohydrodynamics (SPMHD) are developed and tested. Chapter 2 is a review of SPMHD. In Chapter 3, a mixed hyperbolic/parabolic scheme is developed which cleans diverge nce error from the magnetic field. Average divergence error is an order of magnitude lower for all test cases considered, and allows for the stable simulation of the gravitational collapse of magnetised molecular cloud cores. The effectiveness of the cleaning may be improved by explicitly increasing the hyperbolic wave speed or by cycling the cleaning equations between timesteps. In the latter, it is possible to achieve DivB=0. Chapter 4 develops a switch to reduce dissipation of the magnetic field from artificial resistivity. Compared to the existing switch in the literature, this leads to sharper shock profiles in shocktube tests, lower overall dissipation of magnetic energy, and importantly, is able to capture magnetic shocks in the highly super-Alfvenic regime. Chapter 5 compares these numerical methods against grid-based MHD methods (using the Flash code) in simulations of the small-scale dynamo amplification of a magnetic field in driven, isothermal, supersonic turbulence. Both codes exponentially amplify the magnetic energy at a constant rate, though SPMHD shows a resolution dependence that arises from the scaling of the numerical dissipation terms. The time-averaged saturated magnetic spectra have similar shape, and both codes have PDFs of magnetic field strength that are log-normal, which become lopsided as the magnetic field saturates. We conclude that SPMHD is able to reliably simulate the small-scale dynamo amplification of magnetic fields. Chapter 6 concludes the thesis and presents some preliminary work demonstrating that SPMHD can activate the magneto-rotational instability in 2D shearing box tests.
We presents results from Smoothed Particle Magnetohydrodynamics simulations of collapsing molecular cloud cores, and dynamo amplification of the magnetic field in the presence of Mach 10 magnetised turbulence. Our star formation simulations have prod uced, for the first time ever, highly collimated magnetised protostellar jets from the first hydrostatic core phase. Up to 40% of the initial core mass may be ejected through this outflow. The primary difficulty in performing these simulations is maintaining the divergence free constraint of the magnetic field, and to address this issue, we have developed a new divergence cleaning method which has allowed us to stably follow the evolution of these protostellar jets for long periods. The simulations performed of supersonic MHD turbulence are able to exponentially amplify magnetic energy by up to 10 orders of magnitude via turbulent dynamo. To reduce numerical dissipation, a new shock detection algorithm is utilised which is able to track magnetic shocks throughout a large range of magnetic field strengths.
We describe a new switch to reduce dissipation from artificial resistivity in Smoothed Particle Magnetohydrodynamics simulations. The switch utilises the gradient of the magnetic field to detect shocks, setting alpha_B = h |gradB| / |B|. This measure s the relative degree of discontinuity, and the switch is not dependent on the absolute field strength. We present results comparing the new resistivity switch to the switch of Price & Monaghan (2005), showing that it is more robust in capturing shocks (especially in weak fields), while leading to less overall dissipation. The design of this switch is generalised to create similar switches for artificial viscosity and thermal conduction, with proof of concept tests conducted on a Sod shock tube and Kelvin-Helmholtz instabilities.
Artificial resistivity is included in Smoothed Particle Magnetohydrodynamics simulations to capture shocks and discontinuities in the magnetic field. Here we present a new method for adapting the strength of the applied resistivity so that shocks are captured but the dissipation of the magnetic field away from shocks is minimised. Our scheme utilises the gradient of the magnetic field as a shock indicator, setting {alpha}_B = h|gradB|/|B|, such that resistivity is switched on only where strong discontinuities are present. The advantage to this approach is that the resistivity parameter does not depend on the absolute field strength. The new switch is benchmarked on a series of shock tube tests demonstrating its ability to capture shocks correctly. It is compared against a previous switch proposed by Price & Monaghan (2005), showing that it leads to lower dissipation of the field, and in particular, that it succeeds at capturing shocks in the regime where the Alfven speed is much less than the sound speed (i.e., when the magnetic field is very weak). It is also simpler. We also demonstrate that our recent constrained divergence cleaning algorithm has no difficulty with shock tube tests, in contrast to other implementations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا