ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose to investigate infrared properties of gluon and ghost propagators related to the so-called Gribov-Zwanziger confinement scenario, originally formulated for Landau and Coulomb gauges, for other gauges as well. We present results of our inve stigation of SU(2) lattice gauge theory in the maximally Abelian gauge (MAG), focusing on the behavior of propagators in the off-diagonal (i.e. non-Abelian) sector. We also comment on our preliminary results for general linear covariant gauges, in particular for Feynman gauge.
We analyze the systematic errors made when using the generalized eigenvalue problem to extract energies and matrix elements in lattice gauge theory. Effective theories such as HQET are also discussed. Numerical results are shown for the extraction of ground-state and excited B-meson masses and the ground-state decay constant in the static approximation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا