ترغب بنشر مسار تعليمي؟ اضغط هنا

The Einstein spontaneous rates (A-coefficients) of Fe^+ lines have been computed by several authors, with results that differ from each other up to 40%. Consequently, models for line emissivities suffer from uncertainties which in turn affect the det ermination of the physical conditions at the base of line excitation. We provide an empirical determination of the A-coefficient ratios of bright [Fe II] lines, which would represent both a valid benchmark for theoretical computations and a reference for the physical interpretation of the observed lines. With the ESO-VLT X-shooter instrument between 3,000 A, and 24,700 A, we obtained a spectrum of the bright Herbig-Haro object HH1. We detect around 100 [Fe II] lines, some of which with a signal-to-noise ratio > 100. Among these latter, we selected those emitted by the same level, whose de-reddened intensity ratio is a direct function of the Einstein A-coefficient ratios. From the same X-shooter spectrum, we got an accurate estimate of the extinction toward HH1 through intensity ratios of atomic species, HI, recombination lines and H_2 ro-vibrational transitions. We provide seven reliable A-ooefficient ratios between bright [Fe II] lines, which are compared with the literature determinations. In particular, the A-coefficient ratios involving the brightest near-infrared lines (12570A/16440A and 13209A/16440A) are better in agreement with the predictions by Quinet et al. (1996) Relativistic Hartree-Fock model. However, none of the theoretical models predicts A-coefficient ratios in agreement with all our determinations. We also show that literature data of near-infrared intensity ratios better agree with our determinations than with theoretical expectations.
We investigate the diagnostic capabilities of the iron lines for tracing the physical conditions of the shock-excited gas in jets driven by pre-main sequence stars. We have analyzed the 300-2500 nm X-shooter spectra of two jets driven by the pre-main sequence stars ESO-Halpha 574 and Par-Lup 3-4. Both spectra are very rich in [FeII] lines over the whole spectral range; in addition, lines from [FeIII] are detected in the ESO-Halpha 574 spectrum. NLTE codes along with codes for the ionization equilibrium are used to derive the gas excitation conditions of electron temperature and density, and fractional ionization. The iron gas-phase abundance is provided by comparing the iron lines emissivity with that of [OI] 630 nm. The [FeII] lines indicate ESO-Halpha 574 jet is, on average, colder (T_e = 9000 K), less dense (n_e = 2 10^4 cm^-3) and more ionized (x_e = 0.7) than the Par-Lup 3-4 jet (T_e = 13000 K, n_e = 6 10^4 cm^-3, x_e < 0.4), even if the existence of a higher density component (n_e = 2 10^5 cm^-3) is probed by the [FeIII] and [FeII] ultra-violet lines. Theoretical models suggest that the shock at work in ESO-Halpha 574 is faster and likely more energetic than the Par-Lup 3-4 shock. This latter feature is confirmed by the high percentage of gas-phase iron measured in ESO-Halpha 574 (50-60% of its solar abundance in comparison with less than 30% in Par-Lup 3-4), which testifies that the ESO-Halpha 574 shock is powerful enough to partially destroy the dust present inside the jet. This work demonstrates that a multiline Fe analysis can be effectively used to probe the excitation and ionization conditions of the gas in a jet without any assumption on ionic abundances. The main limitation on the diagnostics resides in the large uncertainties of the atomic data, which, however, can be overcome through a statistical approach involving many lines.
As part of the Herschel guaranteed time key program HOBYS, we present the photometric survey of the star forming region Vela-C, one of the nearest sites of low-to-high-mass star formation in the Galactic plane. Vela-C has been observed with PACS and SPIRE in parallel mode between 70 um and 500 um over an area of about 3 square degrees. A photometric catalogue has been extracted from the detections in each band, using a threshold of 5 sigma over the local background. Out of this catalogue we have selected a robust sub-sample of 268 sources, of which 75% are cloud clumps and 25% are cores. Their Spectral Energy Distributions (SEDs) have been fitted with a modified black body function. We classify 48 sources as protostellar and 218 as starless. For two further sources, we do not provide a secure classification, but suggest they are Class 0 protostars. From SED fitting we have derived key physical parameters. Protostellar sources are in general warmer and more compact than starless sources. Both these evidences can be ascribed to the presence of an internal source(s) of moderate heating, which also causes a temperature gradient and hence a more peaked intensity distribution. Moreover, the reduced dimensions of protostellar sources may indicate that they will not fragment further. A virial analysis of the starless sources gives an upper limit of 90% for the sources gravitationally bound and therefore prestellar. We fit a power law N(logM) prop M^-1.1 to the linear portion of the mass distribution of prestellar sources. This is in between that typical of CO clumps and those of cores in nearby star-forming regions. We interpret this as a result of the inhomogeneity of our sample, which is composed of comparable fractions of clumps and cores.
We aim to characterise the morphology and the physical parameters governing the shock physics of the Herbig-Haro object HH99B. We have obtained SINFONI-SPIFFI IFU spectroscopy between 1.10 and 2.45 um detecting more than 170 emission lines, Most of t hem come from ro-vibrational transitions of H_2 and [FeII]. All the brightest lines appear resolved in velocity. Intensity ratios of ionic lines have been compared with predictions of NLTE models to derive bi-dimensional maps of extinction and electron density, along with estimates of temperature, fractional ionisation and atomic hydrogen post-shock density. H_2 line intensities have been interpreted in the framework of Boltzmann diagrams, from which we have derived maps of extinction and temperature of the molecular gas. From the intensity maps of bright lines the kinematical properties of the shock(s) at work in the region have been delineated. Finally, from selected [FeII] lines, constraints on the spontaneous emission coefficients of the 1.257, 1.321 and 1.644 um lines are provided. The kinematical properties derived for the molecular gas substantially confirm those published in Davis et al.(1999), while new information (e.g. v_shock ~115 km s^-1 is provided for the shock component responsible for the ionic emission. We also provide an indirect measure of the H_2 breakdown speed (between 70 and 90 km s^-1) and compute the inclination angle with respect to the line of sight. The map parameters, along with images of the observed line intensities, will be used to put stringent constraints on up-to-date shock models.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا