ترغب بنشر مسار تعليمي؟ اضغط هنا

The recent discovery of a neutron star accretor in the ultra-luminous X-ray source M82 X-2 challenges our understanding of high-mass X-ray binary formation and evolution. By combining binary population synthesis and detailed mass-transfer models, how ever, we show that the binary parameters of M82 X-2 are not surprising provided non-conservative mass transfer is allowed. Specifically, the donor-mass lower limit and orbital period measured for M82 X-2 lie near the most probable values predicted by population synthesis models, and systems such as M82 X-2 should exist in approximately 13% of the galaxies with a star-formation history similar to M82. We conclude that the binary system that formed M82 X-2 is most likely less than 50 Myr old and contains a donor star which had an initial mass of approximately 8-10 M$_odot$, while the NSs progenitor star had an initial mass in the $8-25,rm M_{odot}$ range. The donor star still currently resides on the main sequence, and is capable of continued MT on the thermal timescale, while in the ultra-luminous X-ray regime, for as long as 400,000 years.
X-ray photons, because of their long mean-free paths, can easily escape the galactic environments where they are produced, and interact at long distances with the inter-galactic medium, potentially having a significant contribution to the heating and reionization of the early Universe. The two most important sources of X-ray photons in the Universe are active galactic nuclei (AGN) and X-ray binaries (XRBs). In this Letter we use results from detailed, large scale population synthesis simulations to study the energy feedback of XRBs, from the first galaxies (z~ 20) until today. We estimate that X-ray emission from XRBs dominates over AGN at z>6-8. The shape of the spectral energy distribution of the emission from XRBs shows little change with redshift, in contrast to its normalization which evolves by ~4 orders of magnitude, primarily due to the evolution of the cosmic star-formation rate. However, the metallicity and the mean stellar age of a given XRB population affect significantly its X-ray output. Specifically, the X-ray luminosity from high-mass XRBs per unit of star-formation rate varies an order of magnitude going from solar metallicity to less than 10% solar, and the X-ray luminosity from low-mass XRBs per unit of stellar mass peaks at an age of ~300 Myr and then decreases gradually at later times, showing little variation for mean stellar ages > 3 Gyr. Finally, we provide analytical and tabulated prescriptions for the energy output of XRBs, that can be directly incorporated in cosmological simulations.
High redshift galaxies permit the study of the formation and evolution of X-ray binary populations on cosmological timescales, probing a wide range of metallicities and star-formation rates. In this paper, we present results from a large scale popula tion synthesis study that models the X-ray binary populations from the first galaxies of the universe until today. We use as input to our modeling the Millennium II Cosmological Simulation and the updated semi-analytic galaxy catalog by Guo et al. (2011) to self-consistently account for the star formation history and metallicity evolution of the universe. Our modeling, which is constrained by the observed X-ray properties of local galaxies, gives predictions about the global scaling of emission from X-ray binary populations with properties such as star-formation rate and stellar mass, and the evolution of these relations with redshift. Our simulations show that the X-ray luminosity density (X-ray luminosity per unit volume) from X-ray binaries in our Universe today is dominated by low-mass X-ray binaries, and it is only at z>2.5 that high-mass X-ray binaries become dominant. We also find that there is a delay of ~1.1 Gyr between the peak of X-ray emissivity from low-mass Xray binaries (at z~2.1) and the peak of star-formation rate density (at z~3.1). The peak of the X-ray luminosity from high-mass X-ray binaries (at z~3.9), happens ~0.8 Gyr before the peak of the star-formation rate density, which is due to the metallicity evolution of the Universe.
In black hole X-ray binaries, a misalignment between the spin axis of the black hole and the orbital angular momentum can occur during the supernova explosion that forms the compact object. In this letter we present population synthesis models of Gal actic black hole X-ray binaries, and study the probability density function of the misalignment angle, and its dependence on our model parameters. In our modeling, we also take into account the evolution of misalignment angle due to accretion of material onto the black hole during the X-ray binary phase. The major factor that sets the misalignment angle for X-ray binaries is the natal kick that the black hole may receive at its formation. However, large kicks tend to disrupt binaries, while small kicks allow the formation of XRBs and naturally select systems with small misalignment angles. Our calculations predict that the majority (>67%) of Galactic field BH XRBs have rather small (>10 degrees) misalignment angles, while some systems may reach misalignment angles as high as ~90 degrees and even higher. This results is robust among all population synthesis models. The assumption of small small misalignment angles is extensively used to observationally estimate black hole spin magnitudes, and for the first time we are able to confirm this assumption using detailed population synthesis calculations.
We propose a physically motivated and self-consistent prescription for the modeling of transient neutron star (NS) low-mass X-ray binary (LMXB) properties, such as duty cycle (DC), outburst duration and recurrence time. We apply this prescription to the population synthesis (PS) models of field LMXBs presented by Fragos et al. (2008), and compare the transient LMXB population to the Chandra X-ray survey of the two elliptical galaxies NGC 3379 and NGC 4278, which revealed several transient sources (Brassington et al., 2008, 2009). We are able to exclude models with a constant DC for all transient systems, while models with a variable DC based on the properties of each system are consistent with the observed transient populations. We predict that the majority of the observed transient sources in these two galaxies are LMXBs with red giant donors. Our comparison suggests that LMXBs formed through evolution of primordial field binaries are dominant in globular cluster (GC) poor elliptical galaxies, while they still have a significant contribution in GC rich ones.
In recent years, an increasing number of proper motions have been measured for Galactic X-ray binaries. When supplemented with accurate determinations of the component masses, orbital period, and donor effective temperature, these kinematical constra ints harbor a wealth of information on the systems past evolution. Here, we consider all this available information to reconstruct the full evolutionary history of the black hole X-ray binary XTE J1118+480, assuming that the system originated in the Galactic disk and the donor has solar metallicity. This analysis accounts for four evolutionary phases: mass transfer through the ongoing X-ray phase, tidal evolution before the onset of Roche-lobe overflow, motion through the Galactic potential after the formation of the black hole, and binary orbital dynamics due to explosive mass loss and possibly a black hole natal kick at the time of core collapse. We find that right after black hole formation, the system consists of a ~6.0-10.0 solar masses black hole and a ~1.0-1.6 solar masses main-sequence star. We also find that that an asymmetric natal kick is not only plausible but required for the formation of this system, and derive a lower and upper limit on the black hole natal kick velocity magnitude of 80 km/s and 310 km/s, respectively.
We present theoretical models for the formation and evolution of populations of low-mass X-ray binaries (LMXB) in the two elliptical galaxies NGC 3379 and NGC 4278. The models are calculated with the recently updated StarTrack code (Belczynski et al. , 2006), assuming only a primordial galactic field LMXB population. StarTrack is an advanced population synthesis code that has been tested and calibrated using detailed binary star calculations and incorporates all the important physical processes of binary evolution. The simulations are targeted to modeling and understanding the origin of the X-ray luminosity functions (XLF) of point sources in these galaxies. For the first time we explore the population XLF down to luminosities of 3X10^36 erg/s, as probed by the most recent observational results (Kim et al., 2006). We consider models for the formation and evolution of LMXBs in galactic fields with different CE efficiencies, stellar wind prescriptions, magnetic braking laws and initial mass functions. We identify models that produce an XLF in excellent agreement with the observations both in shape and absolute normalization. We also find that the treatment of the outburst luminosity of transient systems remains a crucial factor for the determination of the XLF since the modeled populations are dominated by transient X-ray systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا