ترغب بنشر مسار تعليمي؟ اضغط هنا

We report eclipse timing variation analyses of 26 compact hierarchical triple stars comprised of an eccentric eclipsing (inner) binary and a relatively close tertiary component found in the {em Kepler} field. We simultaneously fit the primary and sec ondary $O-C$ curves of each system for the light-travel time effect (LTTE), as well as dynamical perturbations caused by the tertiary on different timescales. For the first time, we include those contributions of three-body interactions which originate from the eccentric nature of the inner binary. These effects manifest themselves both on the period of the triple system, $P_2$, and on the longer apse-node timescale. We demonstrate that consideration of the dynamically forced rapid apsidal motion yields an efficient and independent tool for the determination of the binary orbits eccentricity and orientation, as well as the 3D configuration of the triple. Modeling the forced apsidal motion also helps to resolve the degeneracy between the shapes of the LTTE and the dynamical delay terms on the $P_2$ timescale, due to the strong dependence of the apsidal motion period on the triples mass ratio. This can lead to the independent determination of the binary and tertiary masses without the need for independent radial velocity measurements. Through the use of our analytic method for fitting $O-C$ curves we have obtained robust solutions for system parameters for the ten most ideal triples of our sample, and only somewhat less robust, but yet acceptable, fits for the remaining systems. Finally we study the results of our 26 system parameter fits via a set of distributions of various physically important parameters, including mutual inclination angle, and mass and period ratios.
KIC 8560861 (HD 183648) is a marginally eccentric (e=0.05) eclipsing binary with an orbital period of P_orb=31.973d, exhibiting mmag amplitude pulsations on time scales of a few days. We present the results of the complex analysis of high and medium- resolution spectroscopic data and Kepler Q0 -- Q16 long cadence photometry. The iterative combination of spectral disentangling, atmospheric analysis, radial velocity and eclipse timing variation studies, separation of pulsational features of the light curve, and binary light curve analysis led to the accurate determination of the fundamental stellar parameters. We found that the binary is composed of two main sequence stars with an age of 0.9+-0.2 Gyr, having masses, radii and temperatures of M_1=1.93+-0.12 M_sun, R_1=3.30+-0.07 R_sun, T_eff1=7650+-100 K for the primary, and M_2=1.06+-0.08 M_sun, R_2=1.11+-0.03 R_sun, T_eff2=6450+-100 K for the secondary. After subtracting the binary model, we found three independent frequencies, two of which are separated by twice the orbital frequency. We also found an enigmatic half orbital period sinusoidal variation that we attribute to an anomalous ellipsoidal effect. Both of these observations indicate that tidal effects are strongly influencing the luminosity variations of HD 183648. The analysis of the eclipse timing variations revealed both a parabolic trend, and apsidal motion with a period of (P_apse)_obs=10,400+-3,000 y, which is three times faster than what is theoretically expected. These findings might indicate the presence of a distant, unseen companion.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا