ترغب بنشر مسار تعليمي؟ اضغط هنا

127 - Tamara G. Kolda 2015
We consider the problem of decomposing a real-valued symmetric tensor as the sum of outer products of real-valued, pairwise orthogonal vectors. Such decompositions do not generally exist, but we show that some symmetric tensor decomposition problems can be converted to orthogonal problems following the whitening procedure proposed by Anandkumar et al. (2012). If an orthogonal decomposition of an $m$-way $n$-dimensional symmetric tensor exists, we propose a novel method to compute it that reduces to an $n times n$ symmetric matrix eigenproblem. We provide numerical results demonstrating the effectiveness of the method.
Several tensor eigenpair definitions have been put forth in the past decade, but these can all be unified under generalized tensor eigenpair framework, introduced by Chang, Pearson, and Zhang (2009). Given mth-order, n-dimensional real-valued symmetr ic tensors A and B, the goal is to find $lambda in R$ and $x in R^n$, $x eq 0$, such that $Ax^{m-1} = lambda Bx^{m-1}$. Different choices for B yield differe
Graphs are used to model interactions in a variety of contexts, and there is a growing need to quickly assess the structure of such graphs. Some of the most useful graph metrics are based on triangles, such as those measuring social cohesion. Algorit hms to compute them can be extremely expensive, even for moderately-sized graphs with only millions of edges. Previous work has considered node and edge sampling; in contrast, we consider wedge sampling, which provides faster and more accurate approximations than competing techniques. Additionally, wedge sampling enables estimation local clustering coefficients, degree-wise clustering coefficients, uniform triangle sampling, and directed triangle counts. Our methods come with provable and practical probabilistic error estimates for all computations. We provide extensive results that show our methods are both more accurate and faster than state-of-the-art alternatives.
Symmetric tensor operations arise in a wide variety of computations. However, the benefits of exploiting symmetry in order to reduce storage and computation is in conflict with a desire to simplify memory access patterns. In this paper, we propose a blocked data structure (Blocked Compact Symmetric Storage) wherein we consider the tensor by blocks and store only the unique blocks of a symmetric tensor. We propose an algorithm-by-blocks, already shown of benefit for matrix computations, that exploits this storage format by utilizing a series of temporary tensors to avoid redundant computation. Further, partial symmetry within temporaries is exploited to further avoid redundant storage and redundant computation. A detailed analysis shows that, relative to storing and computing with tensors without taking advantage of symmetry and partial symmetry, storage requirements are reduced by a factor of $ Oleft( m! right)$ and computational requirements by a factor of $Oleft( (m+1)!/2^m right)$, where $ m $ is the order of the tensor. However, as the analysis shows, care must be taken in choosing the correct block size to ensure these storage and computational benefits are achieved (particularly for low-order tensors). An implementation demonstrates that storage is greatly reduced and the complexity introduced by storing and computing with tensors by blocks is manageable. Preliminary results demonstrate that computational time is also reduced. The paper concludes with a discussion of how insights in this paper point to opportunities for generalizing recent advances in the domain of linear algebra libraries to the field of multi-linear computation.
Graphs and networks are used to model interactions in a variety of contexts. There is a growing need to quickly assess the characteristics of a graph in order to understand its underlying structure. Some of the most useful metrics are triangle-based and give a measure of the connectedness of mutual friends. This is often summarized in terms of clustering coefficients, which measure the likelihood that two neighbors of a node are themselves connected. Computing these measures exactly for large-scale networks is prohibitively expensive in both memory and time. However, a recent wedge sampling algorithm has proved successful in efficiently and accurately estimating clustering coefficients. In this paper, we describe how to implement this approach in MapReduce to deal with massive graphs. We show results on publicly-available networks, the largest of which is 132M nodes and 4.7B edges, as well as artificially generated networks (using the Graph500 benchmark), the largest of which has 240M nodes and 8.5B edges. We can estimate the clustering coefficient by degree bin (e.g., we use exponential binning) and the number of triangles per bin, as well as the global clustering coefficient and total number of triangles, in an average of 0.33 seconds per million edges plus overhead (approximately 225 seconds total for our configuration). The technique can also be used to study triangle statistics such as the ratio of the highest and lowest degree, and we highlight differences between social and non-social networks. To the best of our knowledge, these are the largest triangle-based graph computations published to date.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا