ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider a situation where the leading-order neutrino mass matrix is derived by a theoretical ansatz and reproduces the experimental data well, but not completely. Then, the next stage is to try to fully reproduce the data by adding small perturba tion terms. In this paper, we obtain the analytical method to diagonalize the perturbed mass matrix and find a consistency condition that parameters should satisfy not to change sintheta_{12} much. This condition could cause parameter tuning and plays a crucial role in relating the added perturbation terms with the prediction analytically, in particular, for the case of the partially quasi-degenerated neutrino masses (m_2 simeq m_1) where neutrinoless double beta decays would be observed in the phase-II experiments.
55 - Takeshi Araki 2013
By postulating the relation theta_{23} simeq 45^circ + etatheta_{13}, we seek preferable correction terms to tri-bi-maximal mixing and discuss their origins. Global analyses of the neutrino oscillation parameters favor eta=pm 1/sqrt{2}; this correspo nds to the relation found by Edy, Frampton, and Matsuzaki some years ago in the context of a T^prime flavor symmetry. In contrast, the results of the u_mu disappearance mode reported by the T2K and Super-Kamiokande collaborations seem to prefer eta=0, which gives an almost maximal theta_{23}. We derive a general condition for ensuring theta_{23} simeq 45^circ + etatheta_{13} and find that the condition is complicated by the neutrino masses and CP violating phases. We investigate the condition under simplified environments and arrive at several correction terms to the mass matrices. It is found that the obtained correction terms can arise from flavor symmetries or one-loop radiative corrections.
We study finite quantum corrections for several well known neutrino mixing matrices and find that it is hard to account for the large value of theta_13 recently reported by T2K and MINOS. To nicely reproduce all experimentally favored neutrino mixing angles and masses, we propose a new neutrino mixing pattern. We also demonstrate a simple realization by slightly extending the standard model to illustrate the quantum corrections.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا