ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting and antiferroquadrupolar (AFQ) transitions in a Pr-based compound PrRh2Zn20 have been found to occur simultaneously at Tc=TQ=0.06 K. The superconducting transition manifests itself by zero resistance and large diamagnetic susceptibili ty. The specific heat exhibits a Schottky anomaly peaking at 14 K and magnetization curves measured at 2 K show anisotropic behaviors. The analysis of these data indicates that the crystalline electric field (CEF) ground state of the trivalent Pr ion is the non-Kramers Gamma3 doublet with the quadrupolar degrees of freedom. A sharp peak in the specific heat at 0.06 K has been attributed not to the superconducting transition but to the AFQ transition because the ordering temperature TQ decreases in B || [100] but increases in B || [110] and B || [111] with increasing B up to 6 T. This anisotropic behavior of TQ(B) can be well explained by a two-sublattice mean-field calculation, which corroborates the AFQ ordered state below TQ. The entropy release at TQ is only 10% of Rln2 expected for the Gamma3 doublet, suggesting possible interplay between the quadrupolar degrees of freedom and the superconductivity.
Electrical resistivity rho, magnetic susceptibility chi, magnetization M and specific heat measurements are reported on a singlecrystalline sample of CePd5Al2, showing successive antiferromagnetic orderings at T_N1=4.1 K and T_N2=2.9 K. The temperatu re dependence of T_N1 shows a Kondo metal behavior with large anisotropy, rho_c/rho_a=3.2 at 20 K, and opening of a superzone gap along the tetragona c-direction below T_N1. Both T_N1 and T_N2 gradually increase with applying pressure up to 2.5 GPa. The data of chi(T) and M(B) in the paramagnetic state were analyzed using a crystalline electric field (CEF) model. It led to a Kramers doublet ground state with wave functions consisting primarily of |+-5/2>, whose energy level is isolated from the excited states by 230 and 300 K. This CEF effect gives rise to the large anisotropy in the paramagnetic state. In the ordered state, the uniaxial magnetic anisotropy is manifested as M_c/M_a=20 in B=5 T and at 1.9 K, and chi_c/chi_a=25 in B=0.1 T and at 4 K. This huge uniaxial magnetic anisotropy in the antiferromagnetic states can be interpreted in terms of isotropic magnetic interaction among the Ce^{3+} moments governed by the strong CEF. In powder neutron diffraction experiments, magnetic reflections were observed owing to the antiferromagnetic ordered states below T_N1, however, no additional reflection was found below T_N2.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا