ترغب بنشر مسار تعليمي؟ اضغط هنا

Time dependent perturbations of states in the holographic dual of a 3+1 dimensional confining theory are considered. The perturbations are induced by varying the coupling to the theorys most relevant operator. The dual gravitational theory belongs to a class of Einstein-dilaton theories which exhibit a mass gap at zero temperature and a first order deconfining phase transition at finite temperature. The perturbation is realized in various thermal bulk solutions by specifying time dependent boundary conditions on the scalar, and we solve the fully backreacted Einstein-dilaton equations of motion subject to these boundary conditions. We compute the characteristic time scale of many thermalization processes, noting that in every case we examine, this time scale is determined by the imaginary part of the lowest lying quasi-normal mode of the final state black brane. We quantify the dependence of this final state on parameters of the quench, and construct a dynamical phase diagram. Further support for a universal scaling regime in the abrupt quench limit is provided.
We use holography to compute the conductivity in an inhomogeneous charged scalar background. We work in the probe limit of the four-dimensional Einstein-Maxwell theory coupled to a charged scalar. The background has zero charge density and is constru cted by turning on a scalar source deformation with a striped profile. We solve for fluctuations by making use of a Fourier series expansion. This approach turns out to be useful for understanding which couplings become important in our inhomogeneous background. At zero temperature, the conductivity is computed analytically in a small amplitude expansion. At finite temperature, it is computed numerically by truncating the Fourier series to a relevant set of modes. In the real part of the conductivity along the direction of the stripe, we find a Drude-like peak and a delta function with a negative weight. These features are understood from the point of view of spectral weight transfer.
We discuss mesons in thermalizing gluon backgrounds in the N=2 supersymmetric QCD using the gravity dual. We numerically compute the dynamics of a probe D7-brane in the Vaidya-AdS geometry that corresponds to a D3-brane background thermalizing from z ero to finite temperatures by energy injection. In static backgrounds, it has been known that there are two kinds of brane embeddings where the brane intersects the black hole or not. They correspond to the phases with melted or stable mesons. In our dynamical setup, we obtain three cases depending on final temperatures and injection time scales. The brane stays outside of the black hole horizon when the final temperature is low, while it intersects the horizon and settles down to the static equilibrium state when the final temperature is high. Between these two cases, we find the overeager case where the brane dynamically intersects the horizon although the final temperature is not high enough for a static brane to intersect the horizon. The interpretation of this phenomenon in the dual field theory is meson melting due to non-thermal effects caused by rapid energy injection. In addition, we comment on the late time evolution of the brane and a possibility of its reconnection.
We consider a holographic superconductor with homogeneous impurities added. We start with the holographic Abelian-Higgs model for s-wave superconductivity, and turn on a coupling between the gauge field and a new massive gauge field that is introduce d for impurities, whose effect is examined in the probe limit. We find that the condensation of the massive gauge field is induced in the superconducting phase. When the coupling is sufficiently large, the mass gap in the optical conductivity disappears. A resonance peak is found in the conductivity for the massive vector field.
107 - Takaaki Ishii 2010
An approach to realize a hyperon as a bound-state of a two-flavor baryon and a kaon is considered in the context of the Sakai-Sugimoto model of holographic QCD, which approach has been known in the Skyrme model as the bound-state approach to strangen ess. As a simple case of study, pseudo-scalar kaon is considered as fluctuation around a baryon. In this case, strongly-bound hyperon-states are absent, different from the case of the Skyrme model. Observed is a weak bound-state which would correspond to Lambda(1405).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا