ترغب بنشر مسار تعليمي؟ اضغط هنا

156 - Taiji Suzuki 2014
In this paper, we investigate the statistical convergence rate of a Bayesian low-rank tensor estimator. Our problem setting is the regression problem where a tensor structure underlying the data is estimated. This problem setting occurs in many pract ical applications, such as collaborative filtering, multi-task learning, and spatio-temporal data analysis. The convergence rate is analyzed in terms of both in-sample and out-of-sample predictive accuracies. It is shown that a near optimal rate is achieved without any strong convexity of the observation. Moreover, we show that the method has adaptivity to the unknown rank of the true tensor, that is, the near optimal rate depending on the true rank is achieved even if it is not known a priori.
102 - Taiji Suzuki 2013
We propose a new stochastic dual coordinate ascent technique that can be applied to a wide range of regularized learning problems. Our method is based on Alternating Direction Multiplier Method (ADMM) to deal with complex regularization functions suc h as structured regularizations. Although the original ADMM is a batch method, the proposed method offers a stochastic update rule where each iteration requires only one or few sample observations. Moreover, our method can naturally afford mini-batch update and it gives speed up of convergence. We show that, under mild assumptions, our method converges exponentially. The numerical experiments show that our method actually performs efficiently.
We investigate the learning rate of multiple kernel learning (MKL) with $ell_1$ and elastic-net regularizations. The elastic-net regularization is a composition of an $ell_1$-regularizer for inducing the sparsity and an $ell_2$-regularizer for contro lling the smoothness. We focus on a sparse setting where the total number of kernels is large, but the number of nonzero components of the ground truth is relatively small, and show sharper convergence rates than the learning rates have ever shown for both $ell_1$ and elastic-net regularizations. Our analysis reveals some relations between the choice of a regularization function and the performance. If the ground truth is smooth, we show a faster convergence rate for the elastic-net regularization with less conditions than $ell_1$-regularization; otherwise, a faster convergence rate for the $ell_1$-regularization is shown.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا