ترغب بنشر مسار تعليمي؟ اضغط هنا

One of the main challenges for biomedical research lies in the computer-assisted integrative study of large and increasingly complex combinations of data in order to understand molecular mechanisms. The preservation of the materials and methods of su ch computational experiments with clear annotations is essential for understanding an experiment, and this is increasingly recognized in the bioinformatics community. Our assumption is that offering means of digital, structured aggregation and annotation of the objects of an experiment will provide necessary meta-data for a scientist to understand and recreate the results of an experiment. To support this we explored a model for the semantic description of a workflow-centric Research Object (RO), where an RO is defined as a resource that aggregates other resources, e.g., datasets, software, spreadsheets, text, etc. We applied this model to a case study where we analysed human metabolite variation by workflows.
Provenance is a critical ingredient for establishing trust of published scientific content. This is true whether we are considering a data set, a computational workflow, a peer-reviewed publication or a simple scientific claim with supportive evidenc e. Existing vocabularies such as DC Terms and the W3C PROV-O are domain-independent and general-purpose and they allow and encourage for extensions to cover more specific needs. We identify the specific need for identifying or distinguishing between the various roles assumed by agents manipulating digital artifacts, such as author, contributor and curator. We present the Provenance, Authoring and Versioning ontology (PAV): a lightweight ontology for capturing just enough descriptions essential for tracking the provenance, authoring and versioning of web resources. We argue that such descriptions are essential for digital scientific content. PAV distinguishes between contributors, authors and curators of content and creators of representations in addition to the provenance of originating resources that have been accessed, transformed and consumed. We explore five projects (and communities) that have adopted PAV illustrating their usage through concrete examples. Moreover, we present mappings that show how PAV extends the PROV-O ontology to support broader interoperability. The authors strived to keep PAV lightweight and compact by including only those terms that have demonstrated to be pragmatically useful in existing applications, and by recommending terms from existing ontologies when plausible. We analyze and compare PAV with related approaches, namely Provenance Vocabulary, DC Terms and BIBFRAME. We identify similarities and analyze their differences with PAV, outlining strengths and weaknesses of our proposed model. We specify SKOS mappings that align PAV with DC Terms.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا