ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyze line-of-sight atomic hydrogen (HI) line profiles of 31 nearby, low-mass galaxies selected from the Very Large Array - ACS Nearby Galaxy Survey Treasury (VLA-ANGST) and The HI Nearby Galaxy Survey (THINGS) to trace regions containing cold ( T $lesssim$ 1400 K) HI from observations with a uniform linear scale of 200 pc/beam. Our galaxy sample spans four orders of magnitude in total HI mass and nine magnitudes in M_B. We fit single and multiple component functions to each spectrum to isolate the cold, neutral medium given by a low dispersion (<6 km/s) component of the spectrum. Most HI spectra are adequately fit by a single Gaussian with a dispersion of 8-12 km/s. Cold HI is found in 23 of 27 (~85%) galaxies after a reduction of the sample size due to quality control cuts. The cold HI contributes ~20% of the total line-of-sight flux when found with warm HI. Spectra best fit by a single Gaussian, but dominated by cold HI emission (i.e., have velocity dispersions <6 km/s) are found primarily beyond the optical radius of the host galaxy. The cold HI is typically found in localized regions and is generally not coincident with the very highest surface density peaks of the global HI distribution (which are usually areas of recent star formation). We find a lower limit for the mass fraction of cold-to-total HI gas of only a few percent in each galaxy.
The origin of kpc-scale holes in the atomic hydrogen (H I) distributions of some nearby dwarf irregular galaxies presents an intriguing problem. Star formation histories (SFHs) derived from resolved stars give us the unique opportunity to study past star forming events that may have helped shape the currently visible H I distribution. Our sample of five nearby dwarf irregular galaxies spans over an order of magnitude in both total H I mass and absolute B-band magnitude and is at the low mass end of previously studied systems. We use Very Large Array H I line data to estimate the energy required to create the centrally dominant hole in each galaxy. We compare this energy estimate to the past energy released by the underlying stellar populations computed from SFHs derived from data taken with the Hubble Space Telescope. The inferred integrated stellar energy released within the characteristic ages exceeds our energy estimates for creating the holes in all cases, assuming expected efficiencies. Therefore, it appears that stellar feedback provides sufficient energy to produce the observed holes. However, we find no obvious signature of single star forming events responsible for the observed structures when comparing the global SFHs of each galaxy in our sample to each other or to those of dwarf irregular galaxies reported in the literature. We also fail to find evidence of a central star cluster in FUV or Halpha imaging. We conclude that large H I holes are likely formed from multiple generations of star formation and only under suitable interstellar medium conditions.
Near infrared spectra of 133 red giant stars from ten Galactic open clusters and two Galactic globular clusters spanning 2.2 dex in metallicity and 11 Gyr in age are presented. We combine this sample with ten clusters from Cole and collaborators to i nvestigate the Ca II triplet line strengths and their relation to cluster metallicity and position along the red giant branch. We show that characterizing the stellar surface gravity using Ks band photometry (relative to the horizontal branch) taken from the Two Micron All-Sky Survey allows for metallicity measurements at least as precise as those derived using V or I band data. This has the great advantage that uniform photometry and reliable astrometry is available for a large number of clusters. Using Ks band photometry also reduces the effect of differential reddening within a given cluster. We find no significant evidence for age or metallicity effects to the linear Ca II triplet - metallicity relationship over the small range in magnitudes studied when homogeneous reference metallicities are used. We derive the first spectroscopic metallicity and new radial velocity estimates for five open clusters: Berkeley 81, Berkeley 99, IC 1311, King 2, and NGC 7044. King 2 has an anomalous radial velocity compared with the local disk population. We discuss the possibility that it is part of the Monoceros tidal stream.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا