ترغب بنشر مسار تعليمي؟ اضغط هنا

59 - Steven Simon 2015
The long-standing topological Tverberg conjecture claimed, for any continuous map from the boundary of an $N(q,d):=(q-1)(d+1)$-simplex to $d$-dimensional Euclidian space, the existence of $q$ pairwise disjoint subfaces whose images have non-empty $q$ -fold intersection. The affine cases, true for all $q$, constitute Tverbergs famous 1966 generalization of the classical Radons Theorem. Although established for all prime powers in 1987 by Ozaydin, counterexamples to the conjecture, relying on 2014 work of Mabillard and Wagner, were first shown to exist for all non-prime-powers in 2015 by Frick. Starting with a reformulation of the topological Tverberg conjecture in terms of harmonic analysis on finite groups, we show that despite the failure of the conjecture, continuous maps textit{below} the tight dimension $N(q,d)$ are nonetheless guaranteed $q$ pairwise disjoint subfaces -- including when $q$ is not a prime power -- which satisfy a variety of average value coincidences, the latter obtained as the vanishing of prescribed Fourier transforms.
In a recent paper by Neupert, Santos, Chamon, and Mudry [Phys. Rev. B 86, 165133 (2012)] it is claimed that there is an elementary formula for the Hall conductivity of fractional Chern insulators. We show that the proposed formula cannot generally be correct, and we suggest one possible source of the error. Our reasoning can be generalized to show no quantity (such as Hall conductivity) expected to be constant throughout an entire phase of matter can possibly be given as the expectation of any time independent short ranged operator.
We study the effects of Landau level mixing in the limit of weak electron interaction. We use a numerical method to obtain the two- and three-body corrections to quantum Hall pseudopotentials, which are exact to lowest order in the Landau level mixin g parameter. Our results are in general agreement with certain analytic results (some derived here, some derived by other authors) in the thermodynamic limit. We find that the convergence to this thermodynamic limit can be slow. This suggests that errors could occur if one tries to use pseudopotentials derived in a thermodynamic limit for numerical work on finite systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا