ترغب بنشر مسار تعليمي؟ اضغط هنا

The NASA {it Kepler} mission has been in science operation since May 2009 and is providing high precision, high cadence light curves of over 150,000 targets. Prior to launch, nine cataclysmic variables were known to lie within {it Keplers} field of v iew. We present spectroscopy for seven systems, four of which were newly discovered since launch. All of the stars presented herein have been observed by, or are currently being observed by, the {it Kepler} space telescope. Three historic systems and one new candidate could not be detected at their sky position and two candidates are called into question as to their true identity.
We present Kepler observations of the bright (V=8.3), oscillating star HD 179070. The observations show transit-like events which reveal that the star is orbited every 2.8 days by a small, 1.6 R_Earth object. Seismic studies of HD 179070 using short cadence Kepler observations show that HD 179070 has a frequencypower spectrum consistent with solar-like oscillations that are acoustic p-modes. Asteroseismic analysis provides robust values for the mass and radius of HD 179070, 1.34{pm}0.06 M{circ} and 1.86{pm}0.04 R{circ} respectively, as well as yielding an age of 2.84{pm}0.34 Gyr for this F5 subgiant. Together with ground-based follow-up observations, analysis of the Kepler light curves and image data, and blend scenario models, we conservatively show at the >99.7% confidence level (3{sigma}) that the transit event is caused by a 1.64{pm}0.04 R_Earth exoplanet in a 2.785755{pm}0.000032 day orbit. The exoplanet is only 0.04 AU away from the star and our spectroscopic observations provide an upper limit to its mass of ~10 M_Earth (2-{sigma}). HD 179070 is the brightest exoplanet host star yet discovered by Kepler.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا