ترغب بنشر مسار تعليمي؟ اضغط هنا

By combining optical and near-IR observations from the Hubble Space Telescope with NIR photometry from the Spitzer Space Telescope it is possible to measure the rest-frame UV-optical colours of galaxies at z=4-8. The UV-optical spectral energy distri bution of star formation dominated galaxies is the result of several different factors. These include the joint distribution of stellar masses, ages, and metallicities, and the subsequent reprocessing by dust and gas in the ISM. Using a large cosmological hydrodynamical simulation we investigate the predicted spectral energy distributions of galaxies at high-redshift with a particular emphasis on assessing the potential contribution of nebular emission. We find that the average pure stellar UV-optical colour correlates with both luminosity and redshift such that galaxies at lower-redshift and higher-luminosity are typically redder. Assuming the escape fraction of ionising photons is close to zero, the effect of nebular emission is to redden the UV-optical 1500-V_w colour by, on average, 0.4 mag at z=8 declining to 0.25 mag at z=4. Young and low-metallicity stellar populations, which typically have bluer pure stellar UV-optical colours, produce larger ionising luminosities and are thus more strongly affected by the reddening effects of nebular emission. This causes the distribution of 1500-V_w colours to narrow and the trends with luminosity and redshift to weaken. The strong effect of nebular emission leaves observed-frame colours critically sensitive to the source redshift. For example, increasing the redshift by 0.1 can result in observed frame colours changing by up to ~0.6. These predictions reinforce the need to include nebular emission when modelling the spectral energy distributions of galaxies at high-redshift and also highlight the difficultly in interpreting the observed colours of individual galaxies without precise redshifts.
The observed UV continuum slope of star forming galaxies is strongly affected by the presence of dust. Its observation is then a potentially valuable diagnostic of dust attenuation, particularly at high-redshift where other diagnostics are currently inaccesible. Interpreting the observed UV continuum slope in the context of dust attenuation is often achieved assuming the empirically calibrated Meurer et al. (1999) relation. Implicit in this relation is the assumption of an intrinsic UV continuum slope ($beta=-2.23$). However, results from numerical simulations suggest that the intrinsic UV continuum slopes of high-redshift star forming galaxies are bluer than this, and moreover vary with redshift. Using values of the intrinsic slope predicted by numerical models of galaxy formation combined with a Calzetti et al. (2000) reddening law we infer UV attenuations ($A_{1500}$) $0.35-0.5,{rm mag}$ ($A_{V}$: $0.14-0.2,{rm mag}$ assuming Calzetti et al. 2000) greater than simply assuming the Meurer relation. This has significant implications for the inferred amount of dust attenuation at very-high ($zapprox 7$) redshift given current observational constraints on $beta$, combined with the Meurer relation, suggest dust attenuation to be virtually zero in all but the most luminous systems.
We investigate the evolution of the galaxy stellar mass function at high-redshift ($zge 5$) using a pair of large cosmological hydrodynamical simulations: {em MassiveBlack} and {em MassiveBlack-II}. By combining these simulations we can study the pro perties of galaxies with stellar masses greater than $10^{8},{rm M_{odot}},h^{-1}$ and (co-moving) number densities of $log_{10}(phi, [{rm Mpc^{-3},dex^{-1}},h^{3}])>-8$. Observational determinations of the galaxy stellar mass function at very-high redshift typically assume a relation between the observed UV luminosity and stellar mass-to-light ratio which is applied to high-redshift samples in order to estimate stellar masses. This relation can also be measured from the simulations. We do this, finding two significant differences with the usual observational assumption: it evolves strongly with redshift and has a different shape. Using this relation to make a consistent comparison between galaxy stellar mass functions we find that at $z=6$ and above the simulation predictions are in good agreement with observed data over the whole mass range. Without using the correct UV luminosity and stellar mass-to-light ratio, the discrepancy would be up to two orders of magnitude for large galaxies $>10^{10},{rm M_{odot}},h^{-1}$. At $z=5$, however the stellar mass function for low mass $<10^{9},{rm M_{odot}},h^{-1}$ galaxies is overpredicted by factors of a few, consistent with the behaviour of the UV luminosity function, and perhaps a sign that feedback in the simulation is not efficient enough for these galaxies.
The addition of Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) has led to a dramatic increase in our ability to study the z>6 Universe. The increase in the near-infrared (NIR) sensitivity of WFC3 over previous instruments has enabled us to reach apparent magnitudes approaching 29 (AB). This allows us to probe the rest-frame ultraviolet (UV) continuum, redshifted into the NIR at $z>6$. Taking advantage of the large optical depths at this redshift, resulting in the Lyman-alpha break, we use a combination of WFC3 imaging and pre-existing Advanced Camera for Surveys (ACS) imaging to search for z approx 7 over 4 fields. Our analysis reveals 29 new z approx 7 star forming galaxy candidates in addition to 16 pre-existing candidates already discovered in these fields. The improved statistics from our doubling of the robust sample of z-drop candidates confirms the previously observed evolution of the bright end of the luminosity function.
The local stellar mass density is observed to be significantly lower than the value obtained from integrating the cosmic star formation history (SFH), assuming that all the stars formed with a Salpeter initial mass function (IMF). Even other favoured IMFs, more successful in reconciling the observed $z=0$ stellar mass density with that inferred from the SFH, have difficulties in reproducing the stellar mass density observed at higher redshift. In this study we investigate to what extent this discrepancy can be alleviated for any universal power-law IMF. We find that an IMF with a high-mass slope shallower (2.15) than the Salpeter slope (2.35) reconciles the observed stellar mass density with the cosmic star formation history, but only at low redshifts. At higher redshifts $z>0.5$ we find that observed stellar mass densities are systematically lower than predicted from the cosmic star formation history, for any universal power-law IMF.
We present a compilation of measurements of the stellar mass density as a function of redshift. Using this stellar mass history we obtain a star formation history and compare it to the instantaneous star formation history. For z<0.7 there is good agr eement between the two star formation histories. At higher redshifts the instantaneous indicators suggest star formation rates larger than that implied by the evolution of the stellar mass density. This discrepancy peaks at z=3 where instantaneous indicators suggest a star formation rate around 0.6 dex higher than those of the best fit to the stellar mass history. We discuss a variety of explanations for this inconsistency, such as inaccurate dust extinction corrections, incorrect measurements of stellar masses and a possible evolution of the stellar initial mass function.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا