ترغب بنشر مسار تعليمي؟ اضغط هنا

A method for computing electron momentum densities and Compton profiles from ab initio calculations is presented. Reciprocal space is divided into optimally-shaped tetrahedra for interpolation, and the linear tetrahedron method is used to obtain the momentum density and its projections such as Compton profiles. Results are presented and evaluated against experimental data for Be, Cu, Ni, Fe3Pt, and YBa2Cu4O8, demonstrating the accuracy of our method in a wide variety of crystal structures.
The surprise discovery of superconductivity below 5K in sodium cobalt oxides when hydrated with water has caught the attention of experimentalists and theorists alike. Most explanations for its occurence have focused heavily on the properties of some small elliptically shaped pockets predicted to be the electronically dominant Fermi surface sheet, but direct attempts to look for them have instead cast serious doubts over their existence. Here we present evidence that these pockets do indeed exist, based on bulk measurements of the electron momentum distribution in unhydrated and hydrated sodium cobalt oxides using the technique of x-ray Compton scattering.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا