ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose a novel estimator of the polarization amplitude from a single measurement of its normally distributed $(Q,U)$ Stokes components. Based on the properties of the Rice distribution and dubbed MAS (Modified ASymptotic), it meets several desira ble criteria:(i) its values lie in the whole positive region; (ii) its distribution is continuous; (iii) it transforms smoothly with the signal-to-noise ratio (SNR) from a Rayleigh-like shape to a Gaussian one; (iv) it is unbiased and reaches its components variance as soon as the SNR exceeds 2; (v) it is analytic and can therefore be used on large data-sets. We also revisit the construction of its associated confidence intervals and show how the Feldman-Cousins prescription efficiently solves the issue of classical intervals lying entirely in the unphysical negative domain. Such intervals can be used to identify statistically significant polarized regions and conversely build masks for polarization data. We then consider the case of a general $[Q,U]$ covariance matrix and perform a generalization of the estimator that preserves its asymptotic properties. We show that its bias does not depend on the true polarization angle, and provide an analytic estimate of its variance. The estimator value, together with its variance, provide a powerful point-estimate of the true polarization amplitude that follows an unbiased Gaussian distribution for a SNR as low as 2. These results can be applied to the much more general case of transforming any normally distributed random variable from Cartesian to polar coordinates.
We explore the 2013 Planck likelihood function with a high-precision multi-dimensional minimizer (Minuit). This allows a refinement of the Lambda-cdm best-fit solution with respect to previously-released results, and the construction of frequentist c onfidence intervals using profile likelihoods. The agreement with the cosmological results from the Bayesian framework is excellent, demonstrating the robustness of the Planck results to the statistical methodology. We investigate the inclusion of neutrino masses, where more significant differences may appear due to the non-Gaussian nature of the posterior mass distribution. By applying the Feldman--Cousins prescription, we again obtain results very similar to those of the Bayesian methodology. However, the profile-likelihood analysis of the CMB combination (Planck+WP+highL) reveals a minimum well within the unphysical negative-mass region. We show that inclusion of the Planck CMB-lensing information regularizes this issue, and provide a robust frequentist upper limit $M_ u < 0.26 eV$ ($95%$ confidence) from the CMB+lensing+BAO data combination.
Based on realistic simulations, we propose an hybrid method to reconstruct the lensing potential power spectrum, directly on PLANCK-like CMB frequency maps. It implies using a large galactic mask and dealing with a strong inhomogeneous noise. For l < 100, we show that a full-sky inpainting method, already described in a previous work, still allows a minimal variance reconstruction, with a bias that must be accounted for by a Monte-Carlo method, but that does not couple to the deflection field. For l>100 we develop a method based on tiling the cut-sky with local 10x10 degrees overlapping tangent planes (referred to in the following as patches). It requires to solve various issues concerning their size/position, non-periodic boundaries and irregularly sampled data after the sphere-to-plane projection. We show how the leading noise term of the quadratic lensing estimator applied onto an apodized patch can still be taken directly from the data. To not loose spatial accuracy, we developed a tool that allows the fast determination of the complex Fourier series coefficients from a bi-dimensional irregularly sampled dataset, without performing an interpolation. We show that the multi-patch approach allows the lensing power spectrum reconstruction with a very small bias, thanks to avoiding the galactic mask and lowering the noise inhomogeneities, while still having almost a minimal variance. The data quality can be assessed at each stage and simple bi-dimensional spectra build, which allows the control of local systematic errors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا