ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant graphene dopants, such as hydrogen adatoms, experience long-range effective interaction mediated by conduction electrons. As a result of this interaction, when several adatoms are present in the sample, hopping of adatoms between sites belon ging to different sublattices involves significant energy changes. Different inelastic mechanisms facilitating such hopping -- coupling to phonons and conduction electrons -- are considered. It is estimated that the diffusion of hydrogen adatoms is rather slow, amounting to roughly one hop to a nearest neighbor per millisecond.
85 - S. LeBohec , J. Talbot , 2013
The interaction of two resonant impurities in graphene has been predicted to have a long-range character with weaker repulsion when the two adatoms reside on the same sublattice and stronger attraction when they are on different sublattices. We revea l that this attraction results from a single energy level. This opens up a possibility of controlling the sign of the impurity interaction via the adjustment of the chemical potential. For many randomly distributed impurities (adatoms or vacancies) this may offer a way to achieve a controlled transition from aggregation to dispersion.
In the field of gamma-ray astronomy, irregular and noisy datasets make difficult the characterization of light-curve features in terms of statistical significance while properly accounting for trial factors associated with the search for variability at different times and over different timescales. In order to address these difficulties, we propose a method based on the Haar wavelet decomposition of the data. It allows statistical characterization of possible variability, embedded in a white noise background, in terms of a confidence level. The method is applied to artificially generated data for characterization as well as to the the very high energy M87 light curve recorded with VERITAS in 2008 which serves here as a realistic application example.
Experiments are in progress to prepare for intensity interferometry with arrays of air Cherenkov telescopes. At the Bonneville Seabase site, near Salt Lake City, a testbed observatory has been set up with two 3-m air Cherenkov telescopes on a 23-m ba seline. Cameras are being constructed, with control electronics for either off- or online analysis of the data. At the Lund Observatory (Sweden), in Technion (Israel) and at the University of Utah (USA), laboratory intensity interferometers simulating stellar observations have been set up and experiments are in progress, using various analog and digital correlators, reaching 1.4 ns time resolution, to analyze signals from pairs of laboratory telescopes.
Intensity interferometry exploits a quantum optical effect in order to measure objects with extremely small angular scales. The first experiment to use this technique was the Narrabri intensity interferometer, which was successfully used in the 1970s to measure 32 stellar diameters at optical wavelengths; some as small as 0.4 milli-arcseconds. The advantage of this technique, in comparison with Michelson interferometers, is that it requires only relatively crude, but large, light collectors equipped with fast (nanosecond) photon detectors. Ground-based gamma-ray telescope arrays have similar specifications, and a number of these observatories are now operating worldwide, with more extensive installations planned for the future. These future instruments (CTA, AGIS, completion 2015) with 30-90 telescopes will provide 400-4000 different baselines that range in length between 50m and a kilometre. Intensity interferometry with such arrays of telescopes attains $50 mu$-arcsecond resolution for a limiting visual magnitude ~8.5. Phase information can be extracted from the interferometric measurement with phase closure, allowing image reconstruction. This technique opens the possibility of a wide range of studies amongst others, probing the stellar surface activity and the dynamic AU scale circumstellar environment of stars in various crucial evolutionary stages. Here we focuse on the astrophysical potential of an intensity interferometer utilising planned new gamma-ray instrumentation.
The present generation of ground-based Very High Energy (VHE) gamma-ray observatories consist of arrays of up to four large (> 12m diameter) light collectors quite similar to those used by R. Hanbury Brown to measure stellar diameters by Intensity In terferometry in the late 60s. VHE gamma-ray observatories to be constructed over the coming decade will involve several tens of telescopes of similar or greater sizes. Used as intensity interferometers, they will provide hundreds of independent baselines. Now is the right time to re-assess the potential of intensity interferometry so that it can be taken into consideration in the design of these large facilities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا