ترغب بنشر مسار تعليمي؟ اضغط هنا

Due to potential level of energy intensity 178m2Hf is an extremely interesting isomer. One possible way to produce this isomer is irradiation of nat-Ta or nat-W samples with high energy protons. Irradiation of nat-Ta and nat-W samples performed for o ther purposes provides an opportunity to study the corresponding reactions. This paper pre-sents the 178m2Hf independent production cross sections for both targets measured by the gamma-ray spectrometry method. The reaction excitation functions have been obtained for the proton energies from 40 up to 2600 MeV. The experimental results were compared with calculations by vario
Momentum spectra of hydrogen isotopes have been measured at 3.5 deg from C12 fragmentation on a Be target. Momentum spectra cover both the region of fragmentation maximum and the cumulative region. Differential cross sections span five orders of magn itude. The data are compared to predictions of four Monte Carlo codes: QMD, LAQGSM, BC, and INCL++. There are large differences between the data and predictions of some models in the high momentum region. The INCL++ code gives the best and almost perfect description of the data.
Fragmentation reactions induced on light target nuclei by protons and light nuclei of energies around 1 GeV/nucleon and below are studied with the latest Los Alamos Monte Carlo transport code MCNP6 and with its cascade-exciton model (CEM) and Los Ala mos version of the quark-gluon string model (LAQGSM) event generators, version 03.03, used as stand-alone codes. Such reactions are involved in different applications, like cosmic-ray-induced single event upsets (SEUs), radiation protection, and cancer therapy with proton and ion beams, among others; therefore, it is important that MCNP6 simulates them as well as possible. CEM and LAQGSM assume that intermediate-energy fragmentation reactions on light nuclei occur generally in two stages. The first stage is the intranuclear cascade (INC), followed by the second, Fermi breakup disintegration of light excited residual nuclei produced after INC. Both CEM and LAQGSM account also for coalescence of light fragments (complex particles) up to He4 from energetic nucleons emitted during INC. We investigate the validity and performance of MCNP6, CEM, and LAQGSM in simulating fragmentation reactions at intermediate energies and discuss possible ways of further improving these codes.
The cross sections for the formation of five residual radionuclides (72Se, 97Zr, 112Pd, 125Sb, and 147Nb) from 40- to 200-MeV proton irradiation of thorium have been measured and are reported. The atomic masses of these fragments span the expected ma ss distribution of radionuclides formed by fission of the target nucleus. Especially in mass regions corresponding to transitions between different relaxation mechanisms employed by available models, these data are expected to be useful to the improvement of high-energy transport codes. The predictions of the event generators incorporated into the latest release of the Monte Carlo N-Particle code (MCNP6) are compared with data measured in this work in the hope that these results may be useful to the continued process of code verification and validation in MCNP6.
178m2-Hf is an extremely interesting isomeric state due to its potential energy capacity level. One possible way to obtain it is by irradiation of a nat-Ta sample with a high-current proton accelerator. Up to now, there was no information in the inte rnational experimental nuclear data base (EXFOR) for this reaction. Irradiations of nat-Ta samples performed for other purposes provide an opportunity to address this question. This paper presents the 172m2-Hf independent production cross-sections determined by gamma-ray spectrometry. The nat-Ta(p,x)172m2-Hf excitation function is studied in the 20-3500 MeV energy range. Comparisons with results by several nuclear models (ISABEL, Bertini, INCL4.5+ABLA07, PHITS, CASCADE07, and CEM03.02) used as event-generators in modern transport codes are also reported. However, since such models are generally not able to separately predict ground and isomeric states of reaction products, only 178-Hf independent and cumulative cross-section data are compared.
We have measured double-differential cross sections in the interaction of 175 MeV quasimonoenergetic neutrons with O, Si, Fe and Bi. We have compared these results with model calculations with INCL4.5-Abla07, MCNP6 and TALYS-1.2. We have also compare d our data with PHITS calculations, where the pre-equilibrium stage of the reaction was accounted respectively using the JENDL/HE-2007 evaluated data library, the quantum molecular dynamics model (QMD) and a modified version of QMD (MQMD) to include a surface coalescence model. The most crucial aspect is the formation and emission of composite particles in the pre-equilibrium stage.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا