ترغب بنشر مسار تعليمي؟ اضغط هنا

Methods of phylogenetic inference use more and more complex models to generate trees from data. However, even simple models and their implications are not fully understood. Here, we investigate the two-state Markov model on a tripod tree, inferring conditions under which a given set of observations gives rise to such a model. This type of investigation has been undertaken before by several scientists from different fields of research. In contrast to other work we fully analyse the model, presenting conditions under which one can infer a model from the observation or at least get support for the tree-shaped interdependence of the leaves considered. We also present all conditions under which the results can be extended from tripod trees to quartet trees, a step necessary to reconstruct at least a topology. Apart from finding conditions under which such an extension works we discuss example cases for which such an extension does not work.
We derive an invertible transform linking two widely used measures of species diversity: phylogenetic diversity and the expected proportions of segregating (non-constant) sites. We assume a bi-allelic, symmetric, finite site model of substitution. Li ke the Hadamard transform of Hendy and Penny, the transform can be expressed completely independent of the underlying phylogeny. Our results bridge work on diversity from two quite distinct scientific communities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا